INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the

most advanced technological means to photograph and reproduce this document

have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following explanation of techniques is provided to help you understand
markings or notations which may appear on this reproduction.

1.

The sign or ‘“target’’ for pages apparently lacking from the document
photographed is “Missing Page(s)’. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

. When an 1image on the film 1s obhiterated with a round black mark it 1s an

indication that the film nspector noticed either blurred copy because of
movement during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that should not have been filmed, you will find a good
image of the page in the adjacent frame. If copyrighted materials were
deleted you will find a target note listing the pages in the adjacent frame,

. When a map, drawing or chart, etc., 1s part of the material being photo-

graphed the photographer has followed a defimite method n ‘“‘sectioning”
the material It i1s customary to begin filming at the upper left hand corner of
a large sheet and to continue from left o right in equal sections with small
overlaps. If necessary, sectioning is continued again—beginning below the
first row and continuing on until complete.

. For any illustrations that cannot be reproduced satisfactorily by xerography,

photographic prints can be purchased at additional cost and tipped into your
xerographic copy. Requests can be made to our Dissertations Customer
Services Department.

. Some pages in any document may have indistinct print. In all cases we have

filmed the best available copy.

University
Micrcfilms
International

300N ZEEB RD, ANN ARBOR, MI 48106

8203557
REHAX, DANIEL ROBERT
COMPUTER AIDED ENGINEERING PROBLEMS AND PROSPECTS

University of llhnois at Urbana-Champaign PHD. 1981

University
Microfilms
International ox zesb Road, Ann Arvor, M1 48106

COMPUTER AIDI'D ENGINEERING
PROBLEMS AND PROSPECTS

BY
DANIEL ROBERT REHAK

B.S., Carnegie~Mellon University, 1973
M.S., Carnegie-Mellon University, 1976

THESIS

Submitted in partial fulfillmeut of the requirements
for the degree of Doctor of Philosophy in Civil Engineering
in the Graduate College of the
University of Illinois at Urbana~Champaign, 1981

Urbana, Illinois

crwenan oy

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

May 1981

WE HEREBY RECOMMEND THAT THE THESIS BY

DANIEL ROBERT REHAK

ENTITLED COMPUTER AIDED ENGINEERING

PROBLEMS AND PROSPECTS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

T11E DEGREL OF DOCTOR OF PHILOSOPHY

’ a
7
p a7l
- /,/ Director 0f Thesis Research
‘-"‘/ [y C f)
@z L. -

Head of Department

Committee on FmallE\ fnationy
“, 7 .
4, <

/'/ Chatrman

A/Jgﬁ,y/ bt
Nk ek :

N

"/
/4. 7 et
1 Reffired for doctor’s degree but not for master’s

0017

Bamte t " (PSS Vr VR T S PIC ICUITUN ST VPP SR

£ T TR, TG PR T I, TS I

- -

ey

[T
| il
-

ABSTRACT

We are now entering Lhe third decade of engineering computer
applications. In the past twenty years, the computer has become a requisite
tool in civil engineering. One is hard-pressed to imagine the analysis and
design of structures such as high-rise buildings (exemplified by the Sears
Tower, John Hancock Building, World Trade Center, etc.) without such a
powerful computational tool. Unfortunately, the computer is still used as a
basic tool, and has not been fully integrated into the design process. There
has been a significant increase in the scope, range, and power of the computer
applications, but there has been little progress in the development of an
integrated computer aided engineering enviromment.

The computer has the potential to take a much larger role in the
engineering design, analysis, construction, and projzct management processes.
The use of computer systems to maintain the large volume of data present for a
project, to verify the compliance with standards, and to provide project
management, in addition to its traditional design and analysis role 1is
desirable. Integration of the computer throughout the design process can
produce better engineered systema by allowing the computer to assure
consistency, completeness, and compliance, in a rigorous manner, throughout
the design cycle; the current lack of these aspects is a major problem.

Attempts to advance computer utilization in engineering are being blocked
by the current state of engineering software technology. Much of the software
being used was developed in the mid-sixties. There have been some changes in
the underlying software concepts utilized, but a large portion of current
software is rooted in the computer techmology of the s8ixties. In order to
move forward and provide future advanced engineering systems, significant
changes in engineering software systems are required.

Two problems, (a) the design of an integrated multi-disciplinary
engineering design software system, and (b) interfaces to finite element
systems, are presented to show: (1) why the current state of engineering
softwvare technology is not capable of supporting the development of advanced
engineering computer systems, and (2) what types of capabilifies are needed in
these systems. Particular issues discussed in detail include: standards
processing, data management and handling, program interfaces, and logic and

process control.

To develop the next generation of engineering computer systems, advanced
computer technologies must be integrated into engineering software. Topics
such as relational database management and knowledge based artificial
intelligence are discussed, and it is shown how aspects of these technologies
can be applied to the problems currently limiting engineering software. These
technologies provide the basis for a proposed software enviromment which may

be ugsed to develop advanced computer aided engineering software systems.

PREFACE

The presentation contained herein is the result of two pilot studies by
the author:

(a) The design and implementation of a general purpose multi-

disciplinary computer aided design system.

(b) The design and implementation of user interfaces to finite

element software,

Both of these problems have a straightforward description, and the form and
style of the desired solutions is known. Unfortunately, a straightforward
implementation of the solutions, based on current engineering software
practice, 18 not possible. The difficulties in developing complete solutions
to these problems lies in the current state of software for engineering
problems. These complex engineering software systems require complex software
solutions, software beyond the scope of that currently used in engineering
application programs. As a result, this thesis has evolved as a discussion of
the software issues which need be addressed in order to advance the art of
computer applications in engineering.

This thesis deals with the software engineering of a proposed new
generation of engineering software systems. The resulting discussion, and the
topics on which it is based, are interdisciplinary in nature. The
presentation deals with both the engineering nature of the problems associated
with developing such software systems, and with a variety of computer science

topics and techniques which are used in the proposed solution.

Organization: Chapter 1 provides background information on computer
applications 1n civil engineering. It presents a review of the evolution of
computer utilization in civil engineering applications, a defimition of
computer aided engineering, and a presentation of the objectives and scope of
this research.

In chapter 2, the two problem domains: (a) the design of an integrated
multi-disciplinary engineering design software system, and (b) interfaces to
finite element systems are presented. A description of the problem domain,
the capabilities -needed for a solution, and the status of solutions to the

problems are presented.

Specific problem areas, which are independent of any application domain,
and which limit the development of advanced engineering computer systems, are
presented in chapter 3. This chapter deals only with the various problem
areas. The problem areas are each treated individually and independently of
any possible solutions.

Chapter 4 contains the description of a variety of tools and techniques
which might be used to develop solutions to the problems discussed. Each of
the solution techniques may be applicable to one or more of the problem areas
of chapter 3. These techniques will be related to the problem areas, but each
of the techniques will be treated individually.

Chapter 5 proceeds to describe a proposed prototype computer aided
engineering software enviromment which could be wused to develop advanced
computer applications for engineering. All of the various solution techniques
are combined in an integrated system to address all of the problem areas. The
reader may skip directly from chapter 1 to chapter 5 if he desires only
information on the proposed solution.

A summary and discussion of the proposed software system, along with its
application to the specific problem domains presented in chapter 2, are
contained in chapter 6.

Many of the tools and techniques used in the proposed engineering
software enviromment are taken from state-of-the-art research ir computer
science and software eungineering and are foreign to civil engineer1ng and many
of the readers of this thesis. For the readers convenience, a short
introduction to some of these topics is presented in the appendices.
Additionally, there is a glossary to present definitions for many of the terms

used throughout the text.

Acknowledgements: The author wishes to express his appreciation to has
advisor, Professor L. A. lLopez, for his assistance throughout this study.

The Civil Engineering Systems Laboratory of the University of Illinois
(CESL) and the Department of Civil Engineering provided unlimited access to
the Burroughs B6700 and PDP 11/04~GT4l computing facilities. The availability
of these resourcer, ¢nd the interaction with the user community and faculty
provided invaluable insight and experiemce throughout this study.

Financial support provided by University of Illinois Fellowships and

Research Assistantships is gratefully acknowledged.

TABLE OF CONTENTS

AB S TRACT L] L] L] L] L] L] L] . L] . . a [] L] . L

PREFACE

TABLE OF CONTENIS « 4 ¢« ¢ ¢ o « ¢ ¢ o &

LIST OF FIGURES . o« ¢« o ¢ o ¢ o ¢ ¢ &« o

CHAPTER
1.

INTRODUCT ION . [. L . . . L] . .

o1
.2
3

s

TWO

2.1

2.2

Computer Applications in Civil Engineering . . . « « » «
Computer Aided Design / Computer Aided Engineering . . .
Objectives and Scope « ¢« « « o ¢« ¢ o « ¢« s+ o o o o 4 0«

PROBLEM DOMAINS IN ENGINEERING SOFIWARE SYSTEMS

Problem A — A Computer Aided Design System »

2.1.1 Problem and Motivation
2.1.2 System Description . .
2,1.3 System Components . .
2,1.4 Current Status ., . . .

Problem B — User Interfaces

2.1 Problem and Motivation
2.2 Interface Description

2.3 Interface Components .
2

2
2
2
2.2.4 Current Statnus . « «

SOME SPECIFIC PROBLEM AREAS . .

3.1

3.2

Standards Processing . « «
3.1 Linkage « ¢ 4 ¢ o o« &
3.1.2 Acces8 v ¢« 4 4 4 u o
3..3 Changes « « + « « « &
3.1.4 Interpretation
3.1.5 Feedback « « . ¢« « « «

Data Handling . . ¢« « « « &

for

Finite Element Systems

vii

Page

iii

vii

xi

~Nen

10

10

11
14

i5
17

18
18

21
26

27
27
28
29
30
30
31

32

4.

viii

Page

nformation Flow « « + « «

3.2.11 « e o 8 s s s 4 e s s e s e

3.2.2 Consistency and Integrity .« ¢« ¢« « o ¢ ¢ o o o o o o o 33

3.2.3 Data Representation « ¢ « « « o o ¢ o« ¢ o o o « s o & 33

3.2.4 Process Integration ® ¢ & & o e @ & ¢ & e s & o = s @ 35

3,2.5 Context and ACCEBB o « ¢ ¢ ¢ o 2 5 s o s o« o s s ¢ o o 37
3.3 Control & 4 4 4 4 s e 6 4 4 6 8 6 8 e 2 4 a4 s 8 8 s o & & & 38

3.3.1 Design Algorithms . + « « ¢ o« o » o ¢ ¢ o ¢ s ¢ a o o 38
3.3.2 Presenting the Algozrithms . « o o « « ¢ o ¢ » ¢ « o & 39

3.4 InteerCes ® ® 8 & e @& & & & &« & & @& @« & & * & @ @0 ¥ 8 s 40

.
-
[
o
.
[
3
.
.
.
.
-
€
.
.
[
.
.
&

3.4.1 Form and Style . .
3 '4.2 Techniques L] - » L] L] . a L - L] L] L] . L] L] L L] . L] L] . L] 42

3.5 Computer Technology Ba8€ + ¢ « o o« o o o « ¢ « ¢ o s ¢« o o 4 43
3 .5 .1 Hardware L] L] . L] L] . L] L] L] e e L] e [] L] L] e L] [] [] L] L] [] 44
3 l5 .2 Languages . . L] L] - L] . L L] L] L] L - - - L] L] 1] L] L] L] L] 44
3 .5 ‘3 Systms . L] L] L] L] L . L] L] L] L] L) L] . L L L] L] . L] . a L] 45

TECHNIQUES FOR ENGINEERING SOFTWARE SYSTEMS =« o ¢ ¢ o« s « o o o 46

4.1 Relational Database Management Systems . +« « « o « o « o o o 46
4,11 Background « « « o o« o s o s ¢ 5 s s o o o o 0 4 o & o 46
4.,1.2 Problems Addressed . « o o o o o « o o ¢ ¢ o ¢ ¢ o o o 47
4.1.3Advantage8.......--.....-....... 48
4 .1 .4 Disadvantages L] L] . . L L] L] L] b . L] . . L] - . . Q L] L] 50

4.2 ConteXt and SCOPE « o ¢ o « o o o o o s« a s o o 5 o 4 o s o 51

4.2.]1 Problems AddresB8ed « « o« ¢ ¢« o o o o o o 8 s o ¢ o ¢ & 51
4'2 l2 Advantages - * L] . L] L] L] L] L) L] L] L] L] L] L) L] - L] L] L] . L] 52
4.,2.3 Disadvantages .« + « o« ¢ o o o 4 6 3 e 2 @ « s @ s e 54

4.3Kn0w1edgeBaBedSthemB e ¢ 6 o & 8 & & @ ® & % 8 s 8 s » 54

4.3.1 Background . .+ « ¢ ¢« o ¢ « o 5 ¢ ¢ o o s 0 s 0« o s o

4,3.2 Problems Addressed « « « « o s « « o ¢ s « « o ¢ o o @ 56
4'3 .3 Advantages [] - [] L] [] * [] L] L] [] . L] L] [] L L] L] L] [] L] L] L] 57
4.3.4 Disadvantages .« « « ¢« ¢ o o 2 ¢« « o s ¢ & o s ¢ o & 59

.
[«
o

4.4Virtua1MachineB.................----

4.4,1 Background « o« « « ¢ o ¢ o o 5 ¢« « o o o 8 o s &« 8 s« 61
4.4.2 Problems Addressed « ¢ « o o « ¢ o ¢ ¢ o s o ¢ a v o @ 62
4.4.3 AAvantages « o o « o« ¢ o 2 6 s 6 8 e e @ s 0 e 8 s s s 62
4.4.4 Disadvantages . ¢« « ¢ o o o ¢ o o o o s s s & s o & = 63

4.5 Languages

5. A COMPUTER AIDED ENGINEERING

4.,5.1 Background « . « .
4.,5.2 Problems Addressed
4.,5.3 Advantages . « « .
4.,5.4 Disadvantages

a8 ® & & o & 5 8 s @

SOFTWARE ENVIRONMENT

5.1 The System Enviromment . « « « o ¢ ¢ o« « « « o

5.2 The Support Enviromment

5.2.1 Standards Support
5.2.2 Knowledge Integration
5.2.3 Development Tools

5.2.4 Operational Tools
5.2.5

3.3
5.4

roject Manager .
esign Processor . . .
verall Organization .

The Application Environment .
The Software Envirooment , . .

6 L4 DISCUSSION L] L] . L] L] L] . . L] L] L] L]

6
6

€.2.1 Problem A — A Computer Aided Design
for

System

s & & & @

6.2.2 Problem B — User Interfaces

Systems .

6.3 Unresolved Issues

6.3.1 Computer Technology Base
Legal

6.3.2 Social and

6.4 Conclusions . .
6.5 The Next Step .
6.6 Epilogue . . . &

REFERENCES .

Issues

e e & ¢ o

«l Why the Problems are Currently Umsolvable
«2 Application to the Problem Domains . ., . .

System
Finite Element

1.1 Engineering Relational Database Management
1.2 Rnowledge Based System Kermel

1.3 Standarde Prceessing
1.4 Interface System
1.5P
1.6
1.7

e & o a e

Page

101
102

APPENDIX

A,

B,

C.

FINITE USER’S WISH LIST

DATABASE MANAGEMENT

B.1 The Evolution of Database Management Systems .
B.2 Database Management Systems Structure

B.3 The Relational Approach

ARTIFICIAL INTELLIGENCE .« « » « » &
C.l Artificial Intelligence Concepts

Col.l Concepts « o « o o« ¢ « o &
C.1.2 Problem Solving Domains .
C.2 Production Systems « « « « « « &
C.3 Knowledge Based Systems

GLOSSARY ® e o &« 6 s & e @ @« 8 ®© & & s« e @ .

l.
2.
3.
4.
5.

General
Computer Aided Design Applications
Programming Languages
Programming Language Features . .
Computer Operating Systems

VITA ® ¢ 8 & & 4« 6 ¢ ¢ & a2 8 2 8 & s s 8 s

and

e o & s »

Research

Page

112
122
122
125
126
129
129

129
130

132
134

137

137
140
141
142
144

146

LIST OF FIGURES

FIGURE Page
1.1, Software TechnoloBY + « o« « o « o « o s 2 ¢« s o o s ¢« ¢ o s o & 5
2.1, Desizn LOOP o« o « ¢ o« ¢ o s o s s &« s s o o« s s s s s v o s « & 12
2.2. Finite Element System Configuration .+ « ¢ ¢ ¢« o ¢ ¢ ¢ s o ¢ & 22
3.1. Process Integration Configurations o « o « « « « o ¢ ¢« s o 2 o & 36

5-1. CAESE Configuration e ¢ 8 a4 ® 8 8 0 ® 6 & & & @0 & ¢ 4 v e s e o 83

5.2, Standards Processing SYSBLEM .+ « « o s« o o o o o s « o + o o« ¢ o 85
5.3. Knowledge Procensging SYSLem . « ¢ « o o « o « o ¢ o ¢ « o s o 86
5:4. Interface SYStemM . + o « o o« s o s o ¢ o o o « a « s o s o s o & 87
5.5. Application System . « o« = o« « o o« o o s s o s o s s = s s o & = 88

6-1. Software Technology ® o 8 6 ¢ 8 o @ & € & e & 6 © B e ¢ e v e &« 98
6-2- GAESE Implementation Schedule e ¢ & ¢ 6 & 6 & 8 & ¢ 6 o & ¢ & 100

B.l. Data Models L] L] . L] L] . . L . e . Ll [] . L] L] L [] . . e L] L] L] L] L 124

1. INTRODUCTION

The creation of engineered systems is am ill-defined aud complex task.
It is a coopexative effort between a sponsor or client, a design team, a
constructor or manufacturer, and possibly the users of the product. Each
member of this group has his own (potentially conflicting) concepts and goals
for the project, and these affect the £final product. Decision making,
commuaications, and information management play major roles in the design
process. As projects grow more complex, informal methods for communications,
information management, and decision making tend to break down, resulting in a
decrease in the quality of the final product (measured in time to produce,
costs, or by some physical quality attribute). As a remedy, engineering
oriented design systems based on modern computational technologies can
potentially provide a formal communications, information management, decision
support environment to assist in the engineering process, in addition to
providing the more traditiomal amalytical and computational tools.,

The work contained herein is a discussion of the various problems which
limit the development of such computer systems, and a discussion of techniques
for addressing these problems. The presentation is oriented towards, and
based 1in, the civil engineering design domain. Civil engineering represents,
possibly, a worst case situation: the various groups involved in the design
of a project are usually associated with different organizations; the
projects are long~term; individual projects are unique; numerous
subdisciplines are involved; there are a variety of governing constraints,
regulations, specifications, and standards; absolute measures for judgement
and comparison do mnot exist; the design process is ill-defined and ill-
structured; and of course, everything 1s subject to time varying change.
This situation is not limited to e¢ivil engineering, but rather, it is the norm
in civil engineering. As a result, the presentation which follows should not
be viewed as limited to civil engineering, but as a discussion of a gemeral
problem common to all engineering disciplines, and which 1is exemplified in

civil engineering.

1.1 Computer Applications in Civil Engineering

Computer utilization within civil engineering is entering its third
decade. Since the introduction of COGO [MillC61] and STRESS [FenvS64], usage
has increased to the point where costs of computer utilization in structural
mechanics alone are measured in billions of dollars per year [SchaH78]. It is
difficult to imagine the design and comstruction of modern structures without
computer assistance.

COGO and STRESS were among the first gemeral purpose applications, and
they were respomsible for setting the tone and style of future developments.
From the user’s point of view, some modern applications appear similar to
these original programs. Additionally, STRESS and COGO are still actively
used, Their popularity is due to their effectiveness and ease of use. They
have often been replaced by similar programs with extended capabilities, but
engineers are reluctant to change their tools without need. If they are to be
accepted by the profession, new engineering computer systems must provide more
than a better way to do the same thing.

From these beginnings, computer utilization has expanded into numerous
problem domains, including: hydrology, transportation planning, project
control and scheduling, estimating, automated drafting and detailing, finite
element analysis, geotechnical analysis, and component design and selection.
This horizontal expansion extends into all areas where the mathematical
procedures can be easily converted into automated computational processes.
Additionally, within each domain, there has been a vertical expansion, with
newer systems having extended the capabilities present in their predecessors.
However, in spite of the horizontal expansion, structural mechanics remains
the preeminent application area.

Structural analysis has seen a large vertical expansion of capabilities.
With the completion of STRESS, the developers felt the need for a system with
improved analytical capabilities. STRUDL [LochR67] was thus borm, but its
development was hampered by the then current state of software (the techuiques
used in STRESS required extremely complex hand coding). This resulted in the
development of ICES [RoosD66] to provide support for general civil engineering
applications (although there is nothing particular to the ICES concepts which
limit it to civil engineering).

The finite element methodology emerged at the same time., It requires an
advanced computational capabilaty, and it is readily adapted to current

computer technology. The methodology and its software realization each

contributed to the success and further development of the other. Software
development for finite element applications has continued at a rapid rate,
with all of the new programs attempting to overcome difficulties in, and to
provide capabilities lacking in, prewicus systems.

The large, general purpose finite element analysis systems all rely on
some type of underlying software support to assist in the program develcpment
task and to provide run~time support. NASTRAN! relies on DMAP and GINO
[MacNR71, McCoC72, NASA72a, NASA72b], SESAM on NORSAM [BellK73, EgelO/4,
MoO78}, ASKA on DRS and now DVS [SchrE74, SchrE77, SchrE78, SchrE79], and
FINITE on POLO [LopelL72a, Lopel72b, LopeL77a, DoddR80]. 1In the latter case,
the development of the application (FINITE) was hindered due to insufficient
capabilities in the then available support software, and this necessitated the
development of a general support-supervisory system (POLO) prior to completiomn
of the application.

The support-supervisory systems (ICES, POLO, DVS, etc.) were developed to
ease the burden of programming large application systems, The typical
analysis program is writtem in FORTRAN, which does not provide any facilities
for data structuring, database support, or memory management. A generalized,
large-scale application requires complex data organizations to store and
utilize prcblem data, Additionally, many practical problems exceed the
available physical memory resource of current production computers. Explicit
programming of the details of handling all the data structures, and
development of techniques to fit needed data into the limited memory resource,
is a complex process. It results in programs in which the analytical
component is totally obscured by the details of resource and data management.
The support-supervisory systems attempt to eliminate this burden. They
provide data structuring facilities and run~time support for resource
management, databases, and input language translation. Although applicable to
any type of engineering analysis, the major systems supported are all
structural mechanics or finite element analysis systems.

Most organizations consider the computer to be only a computational tool.
In a recent U.S. General Accounting Office survey [GAO80], the major reason
given for computer utilization was "to carry out tasks which would not be
practical using manual techniques," and the major task area was structural
mechanics. Essentially, engineers use computers to sovlve complex, time

consuming problems which can not be done by other means.

! NASTRAN is a registered trademark.

The limited application of computers outside structural mechanics is of
concern, The s8uccess of computers in the structural mechanics and finite
element analysis field is largely due to the timely development of the two
cooperating technologies. The computer can do more, but application areas
such as reducing the number of design errors and checking compliance with
standards currently account for only 2% and 1% of computer utilizationm,
respectively [GA080]. The computer’s information handling ability is well
suited to the design process. The use of a computer based design system can
eliminate much of the routine processing and data handling performed by the
engineer. This will permit the engineer to become more productive. He will
be able to evaluate more alternatives, and do a better job of design and
checking without increasing design costs. A more effective use of the machine
will allow the engineer to spend more time on the creative aspects of his
task,

This extension of usage of the computer has not occurred as rapidly as
one might 1like. Much of the previous software development effort has been
oriented towards specific applications with well-defined couputational
procedures. Engineering software systems with decision support, informatiom
management, and multi-user communications capabilities are desirable, buc
these are more complex tasks than those which have been computerized in the
past, and for their development they requiie the use of more complex software
techniques that those currently used. The relationship between software
technology and needs and requirements is shown in figure 1.l [JensR79]. It is
the premise of this work that the development of engineering software,
particularly for nonanalytic processes, is difficult and hindered by the
current state-of-the~art in engineering software development, and without
advances in software technology, the range and scope of engineering computer

applications can not be readily expanded.

1.2 Computer Aided Design / Computer Aided Engineering

There has been an increase in the number of attempts to extend the use of
computers into all design domains, augmenting the computer’s traditional
analysis roie. Active areas of development of software for design and
engineering applications 1include mechanical engineering parts manufacturing
and electrical engineering circuit and chip layout. Such efforts are denoted
by a number of names and acronyms such as CAD (Computer Aided Design) and CAM
(Computer Aided Manufacturing). These and various other names and areas of

work are described in more detail in the glossary (section 2).

7

Requirements S
-\\»’//

Ve
7,
// Technol
eclinolo
P 8y
Y

Software Complexity

Time

Figure 1.1. Software Technology

There is a problem in that there are no clear definitions of what
constitutes a design and engineering computer application in a particular
problem domain. Anyone may classify a process, technique, or program into any
of the fields of computer applications to design and engineering. The problem
is particularly acute when dealing with CAD., There have been numercus pieces
of software which have been denoted as CAD systems. However, it is most often
the case that this software only provides some graphics display capability or
analysis function which is wused in some particular phase of the design
process. Such software usually has a very mnarrow scope. Although such
capabilities do fit into the definition of having the computer provide some
assistance in performing design tasks, one is left with the feeling that
something is missing, Design is usually considered to be an ill-structured
creative selection process, the process of selecting components and
configuring the form of an engineered system. Analysis and presentation are
important components of the overall engineering design process, but they are
usually considered to be subservient activities to the total process.

As a vresult of the above situation, the phrase '"computer aided
engineering"” has been used herein to describe the applications of computers in
the more traditiomal Jesign and engineering role. The following is used as a
working definition throughout this presentation.

Computer Aided Engineering: The application of an integrated, man-

machine, computational envirorment to the life-cycle process of
creating multi-disciplinary engineered systems.
In the definition, the following phrases are important:

integrated: Design consists of a number of separate pzrocesses,
each with their own data and computational needs. These
processes and their data should be automatically linked,
without the need for wmanual coupling of the various
computational aids used in the design process.

man-machine: Complex computations can not be performed blindly by
the machine. The engineer still must retain control, using the
computer to perform in a manner which will be most helpful to
the engineer., Engineering computer utilization must be a
synergism of man and machine.

environment: Comprehensive design programs can not be regarded as
simple tools to be picked up from the shelf, wused, and

returned. These systems require the computer be a constant

companion to the engineer. The various computational aids
should be incorporated into all phases of the design process,
and the procedures for design and engineering should rely on an
integrated support enviromment provided by a computer based
design system,

life~cycle: Design and engineering begins with the conception of a

project, and it continues throughout all steps, until the
project is constructed. For many projects the work continues
beyond construction, supporting changes, maintenance, and
updates.

multi-disciplinary: The design of a large project is not the work

of an individual, or of a group of experts from a single
discipline, but rather, it involves the cooperation of
engineers, specialists, and technicians from a variety of
areas,

Computer aided engineering systems should deal with all of these aspects
of engineering and design. Any system claiming to do computer aided
engineering must deal with aspects such as project control, data management,
process integration, and user communications all applied to large—-scale,
multi-disciplinary, long-term, engineered projects. Any computer application
which fails to deal with all of these aspects can not be classified as one
doing true computer aided engineering. Unfortunately, most application

systems available today fail to meet these criteria.

1.3 Objectives and Scope
This work deals with the design and implementation (the software
engineering [JensR79]) of large, general purpose engineering software systems.
Such systems are designed specifically to support engineering and design
applications with the following attributes:
generalized: Specific applications are designed to solve ome and
only one problem (possibly with some minor parametric
variations). Generalized or general purpose applications are
designed to solve all members of a large class of problems
(e.g., one program for all types of finite element structural
analysis as opposed to individual programs for flat plates, 2-D
plane stress and strain, cylindrical shells, etc.).

Generalized systems provide an extensive set of capabilities

which can be applied in a majority of situations (but which are
possibly not the most efficient or most appropriate for amy one
case). They are preferred because they present a uniform
problem solving approach for an entire problem domain, rather
than different approaches for many similar tasks.
large~scale: Large—-scale systems are mnot constrained ¢o a
particulzr maximum 8ize of problem; they are desigmed to be
applied throughout the range of potential problem sizes, from
the smallest to the largest practical. Thus, the size of the
problem being solved need not influence the solution approach.
ill-structured: Design and engineering are ill-defined and ill-
structured tasks. Specific single component design may have a
well-defined and well-structured problem solving methodology,
but the "creative" design and engineering process which deals
with an entire engineered system is ill-structured [SimoH73].
"Each small phase of the activity appears to be quite well
structured, but the overall process meets none of the criteria
we set down for WSPs [well-structured problems]." The
interaction between, and complexity caused by, the individual
subprocesses creates a process which is ill=structured in the
whole.
Therefore, the scope of this work 1s that of the large-scale, generalized,
computer aided engineering system for ill-structured problems. Such a system
is different from that which is used for any specific, well-structured problem
solving activity. This difference is due to both the level of sophistication
required to implement the features of a generalized engineering software
system, and the actual size of such a system (complexity grows in an
exponential fashion with increasing size and sophistication). This difference
necessitates an approach to software design and implementation which is
different from the approach used for the smaller scope problems. Throughout
this work, all of the discussion presupposes an orientation towards developing
a generalized systems approach for large ill-structured and ill-defined
problem domains.
Computer aided engineering systems (as defined in section 1.2) do not yet
exist, The brute force approach of building a computer aided engineering
system based on current software technology will not produce a system with the

desired sophistication. However, the application of current advanced software

techniques does show promise. Just a8 with the development of the prior
generation of support-supervisory systems, the current software basc must be
expanded to meet the needs of the new applications. Several state-of-the-art
techniques from computer science such as relational database mansgement and
knowledge based artificial intelligence must be brought into usage in
engineering applications,

The wbjectives of this work are to show: that there are several major
prablem areas which must be solved before a computer aided engineering system
can be built, what capabilities are needed in such a system, techniques which
are available to solve these problems, and the structure of a proposed
prototype for the next generation of computer software for engineering

applications.

10

2. TWO PROBLEM DOMAINS IN ENGINEERING SOFTWARE SYSTEMS

In order to better understand the difficulties in developing laxrge-scale
engineering computer systems, two problems are presented and discussed:
(a) The design and implementation of a general purpose, multi-
disciplinary computer aided design system.
(b) The design and implementation of user interfaces to £finite
element software.
These problems are treated individually. The discussion includes the motives
for solving the problem, a description and components of one possible
solution, and a summary of the status of software available to solve the
problem. The discussion is quite general, and does not address the details of
any particular solution. Rather, the purpose is to provide a flavor for the
types of problems which exi1st and which must be addressed in developing

softvare for engineering systems.

2.l Problem A — A Computer Aided Design System

Large design projects are multi~disciplinary in nature. They deal with
large volumes of information, which must "flow" between members of the design
team, Additionally, they are guided and constrained by various design
standards. Information flow and standards present many problems in design.
There is the need to communicate up-~to-date information between the mewmbers of
the design team, and to process the complex standards which govern the design.
Design is an information proczssing task, and the computer is an effective
information processor. A computer based design system could help with
standards processing and with the multi-disciplinary nature of design tasks,
potentially producing better designs at lower costs,

One philosophy for a computer based design system wculd be a generalized
support software system which iLs independent of design tasks and standaxds,
and which could be used as the base for developing specific, task oriented,
design systems. The computer aided design system problem is, therefore: to
design and implement a software system for use in a multi-disciplinary, long~-
term, project oriented, design enviromment (similar to that described in

section 1.2).

11

2.1.1 Probl m and Motivation

Engineering design is & complex process. It is iterative, subject to
many constraints, and multi-disciplinary in nature. One possible view of a
project oriented "design loop" is shown in figure 2.1. The project moves
through four phases: from a synthesis or conceptual phase, to preliminary
design, to detailed design, to construction,

Each of the first three phases of the design process consists of three
steps: (1) selection (design), (2) analysis, and (3) evaluation. This
process is performed by all disciplines, £for all systems, subsystems, and
components which comprise the design. The state of the design proceeds from
the set of available information, with the processes providing new information
for the next phase. The evaluation of a component may, at any time, result in
a failure of the solution to meet criteria, This results in an iteration
within the phase, iteration to an earlier phase, or possibly a complete
failure of the process.

Throughout the design process, the design procedures are drivemn, and the
results are controlled, by a variety of standards, specifications, codes, and
constraints.! The various provisions of the standards sometimes form the
basis for the engineer’s design procedures. Often a design procedure will be
an implicit application of some provision of a standard. The standards used
in design may be either formal (and often legal) requirements, or they may be
informal requirements, expressed as project specifications or a client’s
wishes, The attempt to conform to all of the governing standards influences
the strxructure and content of the design process,

There are a number of difficulties with the incorporatiom of standards
into programs. Currently, they are "hard-coded" (through explicit procedural
language statements) into the body of design programs. Standards are subject
to constant revision, and thus, they are constantly invalidating software.
This makes software which incorporates standards very expensive to maintain.
Standards are produced as compromises of committees, and as a result of the
compromises, the standard may not have a unique, accepted interpretation. In
addition, standards are subject to misinterpretation by programmers while
converting the textual form into a computer processable form (programmers are

usually inexperienced when compared to standards writers). Thus, it 1s not

1 Standards, codes, and specifications are all considered synonyms in this
discussion., Standards appears to be the preferred terminology and will be
used throughout the text.

Conceptual
Design

Preliminary
Design

Detailed
Design

Selection

Analysis

Evaluation

Selection

Analysis |

<\ Evaluation

r

Selection

e Analysis

Evaluation

Construction

v,

Figure

2.1« UDesign Loop

12

13

unreasonable to assume that provisions will be applied incorrectly, and there
will be potentially serious errors of interpretation.

All design procedures require data. The results of one computation are
often used as input for another. Information flows through the design process
and is communicated between members of the design team. Although not commonly
thought of as such, this information is the design. Problems result when
engineers do not have the needed data, or if the data they do have is not
correct or up-to~date. Data availability is insufficient to successfully
complete a design. There is the need to verify that data and design results
do not violate aay constraints, and that they are not in conflict with other
results and the remainder of the design. If such conflicts do exist, it can
only be hoped that they will be detected before the design is completed.
Unfortunately, there are no formal mechanisms for detecting such conflicts and
errors. The longer they go undetected, the more difficult and costly are the
resulting change orders.

Ideally, a data item will appear only once in the design data space (the
data space being the set of all logical data items used in the design). A
singular representation eliminates problems of data consistency and integrity.
However, a singular representation of data is not always the most appropriate.
There are multiple levels of representation and abstraction which are needed
at the various steps in the design process.

Integrated design systems are often built as ad hoc systems; the various
existing programs are pieced together to form the total system. Every program
has its own set of data structures, data representations, and data needs. It
is necessary to "map" the data between the various processes (integrating the
processes by providing translations of data forms and content). The data
mapping problem is complicated by data items which are inconsistent, or
missing. Since each process may communicate with many others, there is a
combinatorial expansion in the number of interconnections which must be made
as the system grows. The currently available alternative of providing a
centralized database (using a common data structure representation with all
processes mapping data to and from the database) is not much better. The
number of required mappings is smaller since it is proportional to the number
of processes., However, all of the wvarious problems of representation and
missing data still exist. Both the distributed and centralized forms break
down when it is necessary to change any component. The systems are tightly
coupled; explicit data linkages exist (bafed on location, representation, and

content), and these must be modified to make most changes.

14

Current integrated design systems do not have any information £low
capability. The fundamentsl problem is that there are no methods to determine
where data comes from, or what data will be affected by changes to other data.
There is no way to determine if the correct data is being used, or if the data
is consistent with known constraints, If a data inconsistency is detected it
is nearly impossible to determine the effects of such an incomsistency.
Similarly, if the data representations must be modified, there is no way to
detect the impact of such changes.

Although computer based design systems can assist in producing better and
more cost effective designs, and can eliminate some of the hand translation of
data passed between individual progroms, the curreni systems dc not have the
capabilities to deal with the combined procedural, data handling, standards
processing, and integration problems outlined above. Systems which do not
effectively address such problems are not adaptable or responsive to the needs
of the engineering users. It appears that current systems do not successfully
address these various problems. Thus, there is the potential for

significantly better computer utilization in the design process,

2.1.2 System Description

As a result of the apove situation, a project was initiated to design and
implement an integrated system for computer aided design. The system was to
be used for large-scale, long-term, multi-disciplinary projects, and was to
address many of the problems detailed above. It was to be configured as a two
level system.

The lower level was to be application independent, providing general
system support software, but performing no actual design. This level would
provide the data management, information flow, user and hardware interface,
and standards processing capabilities to support design applications. The
information flow capability included the processes necessary to determine what
data was affected by changing another piece of data (data tracking). The
standards processing component permitted the use of standards without directly
coding them into the application programs. Standards processing would be
based on decision table technology currently available [FenvS66, GoelS71,
FenvS73]. By configuring the standards as decision tables, they could be
treated as data to the program, and standards revisions could be accomplished
by changing the decision tables. Thus, revisions would have minimal impact on

the remainder of the design system. Additionally, the system would have the

15

capacity to integrate tasks through the database and data management
facilities (through a data flow based system). This use of a common core of
software to support the applications would be a major extemsion of the
support-supervisory systems such as ICES [RoosD66], POLO [LopelL72a, LopeL72b],
and GENESYS [AlwoR72].

The actual design systems would be implemented on top of the support
level. The various design processing tasks, their databases, and the needed
standards would be assembled into am executable program unit to assist in
design. Various design domains, such as bridges, dams, power plants,
buildings, etc., would euch have their own separate design program, based and

built on the common support software.

2.1.3 System Components

A system which could provide the capabilities described above would
consist of a number of integrated subsystems. Each of these subsystems would
be responsible for handling one aspect of the total problem. The following is
a short description of the major components of a possible system and the tasks
they would perform:

Database Management System: The database manager would be
responsible for handling all data needs of the system and the
applications. It would maintain all databases and provide all
data access mechanisms.

Information Flow System: This is a component of the database
management seystem which would perform all the information
seeking, and data tracking to insure data correctness and
consistency.

Database Definition System: Database definition permits the
various components of the databases to be described, allowing
the databases to be structured, created, and documented
independently of any accessing process,

Standards Processor System: The standards processcr would perform
all work needed to check a component against any applicable
provision of any standard. Whenever an action provided by a
standard was needed, the design module would suspend activity

and invoke this subsystem to perform the appropriate actiom.

16

Standards Definition System: This system would allow the standards
to be defined and converted into their internal representation
so they could be utilized by the standards processor and the
application programs.

Report Generator: The repaort generator would be a programming tool
to support the development of tabular and report output.

Graphics System: The graphics system would provide programming
support for the development of graphical interfaces in
application programs.

Input Language System: This is a software tool which would provide
the translation facilities for user input languages for the
application programs,

Multi-user Communications: The design tasks are performed in
parallel by many engineers. It is mnecessary for them to
communicate with each other, regarding the status of the
project, and to resolve conflicts and errors detected by the
system. The multi~user communications system would provide the
necessary software to support these functions.

These components provide the basis for the support level. The support system
itself includes the software framework into which all of these components are
integrated.

In addition to the support system, there are a number of components which
are application systems when comsidered from the support system point of view,
but which are actually common to all design applications, and would be
included as part of the support system. These components include:

Information Storage and Retrieval System: This system would be

used by the engineer to access the various databases for data
inquiry, and to update and create entries within the databases.
It would provide a direct end-user intezfacc to the database
management system.

Project Definition System: The project definition system would be
used to instantiate and ccatrol the projects of an application
system. The concept of a project, and its alternative
solutions, is independent of application domain. The concept
is common to engineering, and structuring applications to work
in a project oriented enviromment would parallel engineering

practice.

17

Design Controller: The design controller would ©provide the
executive system with which the engineers access the
application tasks, and would handle all needed sequencing and
control to supervise design.

Application Utilities: There are a number of engineering tasks
which are quite general in nature. The alternative to each
application providing the code for such tasks would be to
provide a 1library of wutilities which could be used by any
application. Utilities might include structural analysis,
optimization algorithms, and network algorithms.

The application tasks are develoned using all of these support
components. This common support software must be augmented by a body of
application dependent processes, data structures, and standards. An
application development system would then be used to describe the various
components, their interrelations, and their structure, and to integrate these
components into the complete design system. Each design system developed in

such a manner could then be used.

2.1.4 Current Status

Some software 1is available which is wused to perform design work;
however, it 1s usually quite limited in scope. Existing nrograms usually
operate by selecting a design from a set of possible choices within some range
of parameters (by an iterative trial and error process). Many other design
programs are simple graphics display programs. Some code checking programs
exist, but the standards are "built~in" znd the programs are invalidated by
changes to standards.

A number of the basic tocls used to implement such & suppori system as
described above exist, either in engineering software systems, or as computer
science techniques., These tools include: database systems, input language
systems, graphics systems, and a variety of software and techniques for
standards [HarrJ75a, HarrJ75b, WrigR75]. In addition, there are numerous
basic engineering analysis and computational modules.

There have heen some attempts at develeping integratel support systems.
ICES, POLO, and GENESYS are examples, but all of these have been used
primarily to support large analysis applications., They provide only database
management, language translations, and other run-time support features. None

of the existing support systems provide any standards processing or

18

information £low capability. Other systems such as GLIDE [EastC76, EastC77,
EastC80] include graphics capabilities, but do mnot address the standards
processing and information flow problems. IPAD (Integrated Programs for
Aerospace-Vehicle Design) [GarrC74, MillR74, BurnB78, IPAD80] is ome of the
most recent systems. It is the first to address the long—term neture and
multi-user aspects of the problems, but it does not provide standards support
or information flow capabilities.

In summary, there are many systems and system components in existence.
However, none address all of the problems, and none have a techmnological basis

which appears to be capable of addressing today’s needs.

2.2 Problem B — User Interfaces for Finite Element Systems
Experience has shown that appropriate user interfaces to finite element
software can have a significant increase on the productivity of the users.
These interfaces are usually neglected when the software is developed. As the
software for analysis becomes moze complex, and is applied to larger problem

domains, better interfaces will be needed, and the interfaces will become more

complex.

2.2.,1 Probiem aad Motivation

Finite element analysis is one of the major application area of computers
in engineering. VUsers select a system based on the capabilities of that
system to solve the problem, or class of problems, with which they deal.
Since they desire the computer to be a tool, the selection is based, to a
large degree, on the applicability of the tool. Other aspects, such as
usability, maintainability, adaptability, etc., are not generally considered
as prime factors in selecting a system., If considered, these attributes are
used to select from different systems with comparable amalytical capabilities.

Once a system is put into production for solving a given problem, the
user is affected in three areas: (1) the preparation of the input, (2) the
interpretation of the results, and (3) the direct execution costs. Using some
particuler systcem, and for a given solution and modeling procedure, the user
has little control over the execution costs. However, the interfaces to the
system can have a pronounced effect on the productivity of the engineer and

the total solution costs.

19

It has been estimated that modeling, data preparation, and result
interpretation account for 80Z~90%Z of the total problem solving costs
[HernE74] (such values are dependent of the type of system being used and the
nature of the particular problem being solved). This is contrasted to the
fact that 80% of the software development costs are associated with the
mathematical and computational aspects of the program [HernE74], with only the
remaining 207 being devoted to user features. Improved data generation and
graphics capabilities are estimated to save from 40%-80% of the total costs
[WilsJ76]. This situation is contrasted to other software (commercial and
business systems), where interfaces and e%ror handling are estimated to
comprise over half the code [DeMiR79].

This sad state of affairs is quite understandable. Early finite element
software was developed primarily in universities, or by other research
organizations., The software was usually a tool used to test and implement the
methodology, not to solve production problems. As such, immediate utilization
was of the greatest importance. Results for the research project supexrseded
software [features, This attitude resulted in the development of a great deal
of "throw away" software. This was, and unfortunately still 18, particularly
true in the wuniversities. Such software was often created by a graduate
student for a single project, and was then discarded because of no further
need, lack of needed capabilities to solve other problems, or lack of
documentation [LopeL77b, Lopel77c¢, LopelL79b]. Unfortunately, in eome cases,
some of this software survived and 1s now used by others, but the impact of
the computational aspects remains,

As a direct result of the lack of usability of software, and of the high
costs associated with the user aspects of the software, pre—- and
postprocessors evolved. These are after-the-fact programs, designed to
enhance some part of the user interfaces. Most pre- and postprocessors are
usable with only one finite element program, and provide only a limited number
of features.

There have been some attempts at generalized, multi-host pre- and
postprocessors, but due to the diversity of all potential hosts, it is
extremely difficult to implement such a system. Each individual finite
element program has its own style; ranging from simple programs which accept
bulk, fixed format input for a single structure; to programs which accept
problem oriented language (POL) input for substructured models. The

underlying philosophical basis for the system’s modeling and interface

20

components are 8o different that a pre- and postprocessor must select either
(1) to implement a model and input/interface level which contains only the
simplest components available in all host finite element systems, thereby
eliminating the possibility of using any advanced features of any particular
host, or (2) it must implement a level as high as or higher than that of any
host and provide extremely complex tramnslators to the lower level hosts. In
the second case, some translations may not be possible because of the lack of
particular capabilities in the low level hosts.

The types of features (model snd results display, mesh generation,
renumbering, etc.) found in the pre- and postprocessors are quite similar due
to the structure of the majority of host systems. The underlying basis of the
newer finite element systems are such that the techniques currently applied in
pre-~ and postprocessors are insufficient to provide complete and adequate
interfaces for users.

As an example, concider FINITE [Lopel77a, LopeL79a, DoddR80], which
exhibits a number of user interface problems. FINITE has a problem oriented
language input system, for describing hierarchically substructured models.
There is a formal subsystem ("Library") for describing the input parameters,
and output quantities of the individual types of elements and material models.
Individual processes are written to compute element and material model
quantities, such as stiffness, stresses, loads, etc.,, and these are then
linked to the base s8ystem. The base system provides all input and output
functions and allows any element to be wused with any other elements,
automatically. FINITE suffers serious drawbacks due to the lack of a
comprehensive graphics capability. A simple mesh plotter was developed to
fulfill the need for checking components of complex problems, but it is
limited in that it deals only with individual substructures, and it can not
handle the complex multi-level substructured model display problem.

Extensions of FINITE, via brute force programming and without the use of
sophisticated support software, to display models and results is possible.
Such an effort would be extremely complex and time consuming, but it would
solve the problem. It appears that the basic software technology used to
support FINITE has serious drawbacks and is not adequate to develop the needed
interface capabilities., This is in spite of the fact that the support
goftware technology underlying FINITE (provided by POLO) is one of the most

advanced of those in use today.

21

The finite element interface problem is, therefore, to determine what
basic interfaces need be present in the base system to provide the needed user
capabilities, and what impact tliese features will have on the structuare of

finite element software.

2.2.2 Interface Description

The interface problem is now comnsidered assuming FINITE as the host
finite element system; however, the underlying concepts may be applied to any
generalized finite element system, This problem is, simply: to determine and
design all of the user interfaces needed to provide a convenient, effective
finite element system. When complete, the new system will have all of the
capabilities of the current system relative to structural modeling and
analysis, plus the capability to perform graphical display of all components

of the structural model and all results derived from the model.

2.2,3 Interface Components

A complete description of the design of the interfaces to TFINITE is
beyond the scope of this work. Rather, the following is a description of a
proposed model of the system and the basic components of the solution

A proposed version of FINITE, with a complete set of interfaces, is shown
in figure 2.2. The system comnsists of three basic groups of components. The
first group is Lhe data space used to store all problem and system data. The
various processes used to model, compute, and present results, comprise the
second group. The third group comsists of the various processes used to
interface to the external enviromment. The latter are dependent on the style
of the interface — not the data content (problem oriented language or fixed
format input and tabular or graphical outpuc are each differcut styles and any
can be used with either a substructured or a nonsubatructured medel).

The system’s operation can be viewed as a three level process. The user
is at the highest level. Ue creates a mathematical model of the problem and
obtains results in terms of this description. The problem description and the
results are stored in terms of the mathematical model, the second level. The
third level is the computation model which is used as the basis for performing
the actual analysis. The mathematical model must be consistent with the
computational model. There may be more than one mathematical model; however,

the system will most 1likely support only a single model (this one model

eqe —
o e =
ot ac® Interface A
// Y“t\,e*"’} P
e
P
/ ot Mathematical

o
XY Model Input

-
o~ aal®
énal Model /g’a‘“ 23

Computational

Computatjonal
Kernel

Computational
Results

Results

Mathematical
Model Output

to Mathemat-
cal Model

Output
Interface A

Figure 2.2. Finite Element System Configuration

22

23

assumption is wused throughout the remainder of this discussion). The

interfaces must also be consistent with the mathematical model, although

several interfaces, each of a different type or style, are possible. In

FINITE, the computational model is based on a blocked hypermatrix model. The

mathematical model is one of simple multi~level substructures. The user level

is a direct implementation of the mathematical model, with tabular output of
model components and problem oriented language input for model descriptions
and control requests.

The various components of the system include:

Data Space: The data space consists of the following different types of
data groups:

Mathematical Model: This is a model of the problem being solved,
and it is based directly on the user’s view of the problem. It
typically consists of descriptions of element types, topology,
geometry, parameters, applied loadings, etc.

Mathematical Results: These are the results of the analysis,
expressed imn terms of the mathematical model. Typical
quantities include element stress and strain resultants.

Computational Model: This is a representation of the problem
expressed in the form used in the computational process. It is
typically represented by the stiffness matrices and applied
load vectors.

Computational Results: These are the primary results from the
analysis, typically structural displacements,

Run Time Library: These are element descriptions, such as nodal
degrees of freedom, which are used through the computational
process.

Library: This is the complete description of the elements which is
used throughout all processing steps.

Processes: The system consists of the following processes. Normal
processing proceeds sequentially through the first six
processes given below.

Mathematical Model Input: This process is used to support the
individual input processors (model input interfaces). The
process is independent of the style of the input, and 1is
responsible for creating the mathematical model compomnent of

the data space.

Mathematical to Computational Model: This process is used to
convert the mathematical model to the computational mwodel.
Computational: This is the basic computational component of finite
element analysis, It computes all quantities in the

computational model and all computatiomal results,

Computationsl Output: This process provides access to the
computational model for output purposes.

Computational to Mathematical Results: This process converts the
computational results into the set of mathematical results.
Mathematical Model Output: This process is used to support the
individual output processors (model output interfaces). Each
output process has its own style, and it is used to present

results to the user in terms of his mathematical model.

Librarian: The librarian is used to build and maintain the library
component of the data space.

Interface: The interface compoment provides the links between the user
and the mathematical model input/output processes.

Model Input Interface: Each of these implements a single style of
modeling., In FINITE, the user describes the mathematical model
directly. If the system were used for a particular class of
problems, such as regular framed structures or tubular pipe
iniersections, an linpur system could be developed which
converts a higher 1level ©problem description into the
corresponding mathematical model.

Model Output Interface: Each of these implements an output style,
and corresponds to a given input interface.

Element and Material Modules: These modules are not part of the basic
system, They exist for each type of element, and appear within
every process to perform element dependent computations. There
may be any number (fixed by the particular process) of types of
these modules. Typical modules would include eleument
stiffness, stress-strain, equivalent nodal loads, and residual
loads routines, Similar functions exist for materials,

Interface Modules: It will not be possible to provide, at the system
level, all the functions needed by all of the various interface
systems, These modules permit the basic input and output

processes to be augmented with specific routines to support the

24

25

interface developer’s needs, such as special purpose data
generators for particular model interfaces.

The above provides a suitable model for the various components of the
system. Such a system would permit a variety of interfaces tc be implemented.

FINITE users have expressed the desire for a mnumber of additional
interface and system features. From these, a "User’s Wish List" has been
compiled. This list, presented in appendix A, discussec not only the types of
requests, but also what aspects of the current system are affected by
providing such changes, and the order of magnitude of the proposed tasks.

In order to implement these requested and needed interfaces to FINITE, a
number of basic support components and capabilities must be added to the
suppor t-supervisor (POLO). The following is a short description of the
components needed to support the system model and the various user interface
features:

Input Language System: POLO provides a token oriented language
translation facility. Translation of higher level language
constructs, and a system which is input device independent
(supporting both textual and graphical devices) is required.

Graphics System: Portable, device independent graphice support
software is needed for development of input, model display, and
result display functioms. ’

Report Gemerator: This tool would provide the software support for
developing all forms of tabular output,

Information Storage and Retrieval System: This system would
provide the end-users with the means to interrogate and modify
any component of the sgystem data space without explicit
programming.

log, System Status, and Error Hamdler: All handling of problem
status, error handling and recovery, and the logging of system
messages is currently performed in an ad hoc manner. A common
set of support components for these features would provide the
needed capabilities.

Engineering Data Management: The POLO data manager treats all data
equally and recognizes only certain hierarchical structures.

An extended data manager is needed to handle more of the types

of data used in finite element analysis.

26

2.2.4 Current Status

There are a variety of algorithmic procedures available for implementing
interfaces and performing many of the above tasks. A large number of
algorithms have been published on data generators (both two dimensional, three
dimensional, and special purpose), renumbering algorithms, stress averaging
procedures, mesh display, etc. The problem lies in selecting which procedures
are the best, and which have the most general applicability for a general
purpose system.

Basic software tools for providing both graphics and problem oriented
language translation =e2lso exist. Tools for tasks such as engineering report
generators do not exist. However, the wisdom of using some of the tools is
questionable. For example, consider the use of a machine and device
independent graphics package, which would conform to the proposed (core
system) standard [GSPC79, MichJ78]. There are benefits due to portability of
such standard software, but there also aie problems because sucrh a system 1is
not well suited to the application. The core system provides a number of low
level graphics operations. Applications such as finite element mesh display
require more abstract, higher level operations. The additional software
needed to provide such operations is quite similar in form and capabilities to
that of the core system. Thus, it may be appropriate to develop a special
purpose package, and eliminate the redundant capabilities.

A variety of implementations of interfaces to finite element systems
exist. Many of these are pre—~ and postprocessors. In most cases, the
implementations are designed to address a number of deficiencies im the host
system, and have no particular design philosophy or basis. They just exist as
software to improve usability. This results in questions concerning the
generality and applicability of the ideas and concepts to other systems.

There appear to be sufficient tools and techniques to provide the various
features for, and extensions to, a system such as described above. However,
it requires the development of a large body of software. Potentially, new and
better software tools could significantly vreduce this effort and

simultaneously provide a better solution to the finite element interface

problem.

27

3. SOME SPECIFIC PROBLEM AREAS

Attempts to implement sclution systems for the two pzoblem docmains
described in chapter 2 have not been successful. The lack of success is due
to the complex nature of the problems combined with the current state of
engineering software technology. There are a number of specific, fundamental
problems which must be resolved in order to develop acceptable solution
systems. Five of the most significant will be discussed below. Each of the
specific problem areas will be treated individually, and & discussion of
potential solution techniques and systems is deferred to chapters 4 and 5.
The emphasis of the discussion is that of presenting a techanical description
of the types of problems which arise in developing engineering software. The
implicit assumption throughout this discussion is that these technical
problems must be successfully addressed in future software systems.

The five problems discussed are: (1) standards processing, (2) data
handling, (3) control, (4) interfaces, and (5) the computer techmology base.
The last four problem areas are applicable to any problem domain (including
those of chapter 2). ©Explicit standards processing does not appear in all
types of problems (in some areas of engineering the explicit use of standards
is not required). Hovever, standards are a major problem area in civil
engineering systems, and are required for a system which performs civil

engineering design and checking.

3.1 Standards Processing

Standards have a great influence on the engineering design process. They
have two basic uses: (1) compliance checking of a given design, and
(2) providing a procedure for component selection. In the latter case, the
various provisions often form the basis for design heuristics which are
sometimes implicitly used by the engineer. Standards are usually thought of
as formal bodies of provisions, such as AISC (American Institute of Steel
Construction) [AISC80], ACI (American Concrete Imstitute) [ACI71}, UBC
(Uniform Building Code) [UBC76], or ASTM (American Society for Testing
Materials). In many cases they are also legal requirements which must be met.
Formal standards do mnot specify all criteria for a project; there are many

informal criteria and client needs and wishes which must be combined to form

28

the complete set of project standards which are used to control the design.
There are a number of issues to be dealt with in the computerized utilization
of standards. Those of importance to this work are: (1) linkage, (2) access,
(3) changes, (4) interpretation, and (5) feedback.

To date, the standards which are used arc detormiaistic in naturc. They
describe explicit rules, procedures, and checks which must be made, or to
which a design must conform. Reliability based standards are now being
proposed. These standards are used to determine an overall measure of
reliability of a system, as opposed to determining the safety of an individual
component. With the exception that compliance checking in & reliability based
standard is done om an overall system level, rather than at the level of each
individual component, the problems of the computer utilization of such
standards appear to be identical to those which arise in the use of

traditional deterministic standards.

3.1.1 Linkage

Standards require data for their use. They must be "linked" to the
various data structures and data present in the design space. However,
standards are data context independent; they represent provisions which are
applicable to any componment in a given class of problems. They are used in a
vide variety of contexts, and in each class of problem the data can exist 1in
different representations (see section 3.2.3). For a given type of engineered
system, there are many components, each with potentially different
descriptions, which must all conform to the same standard. There must be a
mechanism for linking the specific data structures and data representations
used in the computer to the context independent description of the applicable
provisions which constitute the standards.

As an example, consider the following provision for allowable stresses in
tension members, taken from the current (1978) AISC Specificatlon1 [AISc80].

1 1n this section, Specification is used to denote the AISC Specification
[AISC70, AISCBO].

29

1.5.1.1 TENSION

Except for pin-connected members, Ft shall not
exceed 0.60Fy on the gross area nor 0.50F, on

the effective net area.
For pin-connected members: F, = 0.45Fy on the net area.
For tension on threaded parts: See Table 1.5.2.1

The provision explicitly references (by symbolic name as used in the
nomenclature of the Specification): F, (ultimate stress), F, (allowable
stress in tension), and Fy (yield stress). The provision requires the net
area (A;) and the gross area (A), although these data items are referenced by
generic name. The applied 1load (P) may be implicitly required £for the
computation of F.., Also, each part of the provision is dependent on the
conditions of "pin-connected" and "threaded parts." Proper utilization of
this provision may require that all or part of these data items be known.

The nomenclature to the AISC Specification lists about 150 items, but
over 400 different data items have been found to exist [FenvS69]. Any
application program using this standard must be able to find and access all of

these generic items for the design or checking of actual components.

3.1.2 Access

The access problem is one which is of concern not only in computerized
standards processing, but also in the manual usage of standards. Basically,
the problem is that of knowing what provisions of the governing standards are
applicable to any step in producing the design. How does an engineer know
that a provision exists or should be applied in a given case? Such
information is mot explicitly given in the standards.

For the provision shown above, the engineer must know he is dealing with
a member that is governmed by tension. How does he determine that the bending
stress in & truss member is negligible, or thst axial stress in a beam does
not require that it be treated as a column, and that the corresponding
provisions of the Specification are not utilized? The alternative is to

exhaustively check all provisions in the Specification.

30

3.1.3 Changes

Many of the problems associated with standards would not exist if
standards did not change. If they were invariant, the various linkages and
access paths could be hard-coded into programs without serious comnsequences.
Standards are currently used in programs in this manner. When a new edition
of a standard is produced, all existing software based on the old version is
invalidated. It is desirable to rapidly incorporate changec to standards into
existing software with minimal impact on the software.

The provision shown above has changed from the previous (1969) version of
the AISC Specification [AISC70].

1.5.1.1 TENSION

On the net section, except at pin holes:
Fe = 0.60Fy
but not more than 0.5 times the minimum tensile

strength of the steel.

On the net section at pim holes in eyebars,
pin~connected plates or builtup members:
Fy = 0.45Fy

For tension on threaded parts see Table 1.5.2.1.

The change i» not & simple modification of the factors—of-safety, or of the
equations used. It is a philosophical change, safety against yield is now
based on the gross area, as opposed to the net area of the member. The change
appears as a modification of the explicitly required data (gross area is
implicitly required for the computation of net area, but this computation may
be performed externally to the utilization of the provision). Changes to a
program would require the addition of a new datum, gross area of a tension
member, which was not present in the previous Specification. Such changes may
be extremely difficult to implement when standards are hard-coded into

application programs.

3.1.4 Interpretation
Standards must be translated f{rom the written textual form to some

computer processable form. The standard’s developers are experts in their

field., Typical software implementors are junior engineers or scientific

31

programmers (because of their knowledge of computers). These people do not
have the expertise and experience to develop programs for standards processing
without the risk of misinterpretation of the standard. The standards
developers, standards experts, and experienced engineers are often too busy
addressing complex engineering problems to devote their time to assist in
softwvare development (the problem of lack of commitment of experienced
personnel to assist in software development, due to these people’s apparent
misconception that they are not important in the development of software,
exists in most areas of program development [JensR79]).

The source of the interpretation problem lies not only with the software
implementors, but also with the standard’s writers. The form and style the
writers use in developing the original standard is the cause of some problems
[HarrJ80].

Interpretation errors may result 1in the incorrect encoding of a
provision, access to incorrect data, or utilization of the wrong provisions.
Equally as serious as the original interpretation problem is the lack of

methods to verify the resulting software.

3.1.5 Feedback

Compliance with a deterministic standard is typified by a binary result:
provision satisfied, provision violated. The actual usage is mnot so simple.
When a criterion is violated, it is necessary to know why the criterion
failed, and vhat changes are needed to satisfy the criteriom. Fur example, if
a tension member is unsatisfactory there are two possible causes, based on the
yield stress and the ultimate stress criteria. For either failure mode, three
different alternatives exist: reduce the load, increase the area, or increase
the steel strength. At any step, the list of potential alternatives can
become long and complex. Guidance is needed to determine which of the
alternatives are plausible and 1likely to be successful. Similarly, if the
check is successful, it may be the case that amother, more economical, design
would also be satisfactory.

The test of compliance of the design of a component with a provision is
not an absolute test. For the provision shown, with steel (A36) with yield
stress (Fy) of 36 KSI, the basic allowable stress limit is 21.6, but the
Specification itself rounds the value to 22. An engineer judges all results
within the range of acceptable engineering accuracy. The computer will

perform only absolute numerical checks. This engineering accuracy is also

32

context dependent. When the engineer knows that a criterion dves not govern
or that the consequences of failure are reduced, he is likely to increase the
range of what he judges to be acceptable. It is nearly impossible to build
this type of judgemernt into the types of programs which are in use today.

The same type of problems exist for reliability based standards. For
such standards, the individual compliance decisions are deferred until the
entire system is checked, but the same types of judgements are needed. The
problem of feedback to determine why an unsatisfactory probability of failure
exists, or to degermine a more economical design, are the same for this tLype
of standard. Since more computations and more components may be involved in
such a system check, the process of determining what alternatives to pursue

may be more complex.

3.2 Data Handling

The engineering process deals with the creation and the manipulation of
the data and information which describes &and models the system being
engineered. The basic cause for many of the data handling problems is the
fact that the data is a resource which is independent of processes, but is
only of value to particular processes. Problems result from, and are related
to, this "corporate" nature of the data; the data logically "belongs" to the
design, not to an individual design process or designer which uses the data.
The dats has traditionally been maintained by individuals and indivadual
processes. The data is treated in the manner which is most appropriate for
the individual involved, and the impacts of such data handling on others are
not considered.

There are a number of specific problems to be dealt with in data
handling, These include: (1) how to propagate the data through the design
process, (2) how to be sure the current, correct data is being used, (3) how
to represent the data, (4) how to integrate data and processes, and (5) how to
access data, Each of these problem aress are discussed separately, although

they are all interrelated.,

3.2.1 Information Flow
Data is produced and modified by various processes. It is used
(consumed) by other processes. This data is the design, and it moves and

flows from one process to other processes which require the data. To

33

integrate processes, it is necessary to integrate the data and provide the
mechanisms for the data to move from process to process. The other data
handling problems all result from the attempts to produce an integrated system
in which the information flows between processes. Capabilities must exist to

support and provide this information flow.

3.2.2 Consistency and Integrity

The data used in design should be correct and up-to-date. A major
problem in engineering is the performance of work based on the wrong or
incomplete data. This produces errors and unsatisfactory designs. In some
cases these errors are detected before the design work is completed; in other
cases after—-the~fact changes must be made. The problems of comnsistency and
integrity deal with: (1) who currently has the data, (2) who changed or
created the data, (3) is the data correct, (4) how to keep the data current,
and (5) what the change of a data item implies to other data. If the "owner"
of the data (the individual or process which is currently responsible for
maintaining the correct value of the data) is known, then it is possible to
access the data when 1t is needed by some other user or process. Knowing who
changed the data permits placement of responsibility (and blame), and permits
one to query the respomsible individual to determine the ratiomal used to
obtain the current data value.

The attributes correct and current are difficult to characterize. The
e{fects of incorrect or out~of-date data are known, but the problem is to
determine if the data is correct or incorrect. Since data is dependent on,
and derived from other data, a change implies that the derived data is
potentially wrong. An information f£low capability is needed to determine what
data is affected by a change of some other data, and judgement is needed to
determine the effects of such a change (recomputing some data due to a change
in some other data item, every time a value changes, may not be required, and
may be very costly). Unfortunately, in current emgineering software systems,

there are no mechanisms to attack these problems.

3.2.3 Data Representation

Data is usually associated with one major process, and this process
determines how the data is organized and stored — its representation. Theve
is both a logical and a physical representation of the data. Consider, for

example, nodal 1loads from finite element analysis. Logically, these consgist

34

of a force vector (direction and magnitude) and a location (node).
Physically, this may be represented by a set of magnitudes of every degree of
freedom component at every node stored as a vector of length equal to "Number
of Degrees of Freedom per Node" times "Number of Nodes.” An alternative
representation is a data structure consisting of a node, directiom, and
magnitude for every specified load component.

In conventional progrsmming practice, once a representation is selected,
the access mechanisms for that representation are coded directly into
processing modules. Other processing modules (either new, or replacement
modules) will need the data at some future time. Their needs often will be
different from those of the existing processes, and the selected storage
representations (either logical or physical) are often not appropriate.

Consider the topology of a finite element mesh as an example. Various
elements are associated with various nodes in the mesh. Each element has a
list of the nodes upon which it is incident — the element incidences. The
information is often logically represented as a list of nodes associated with
each element. This is quite mnatural as the element matrices are often
produced on an element-by-element basis, and then assigned to the global
matrices through the incidence mappings. For a process such as stress
averaging, it is necessary to know what elements are incident on each node —
the nodal incidences. These two sets of data are the inverses of each other.
Either can be determined dynamically from the other as needed, or an
alternative data representation can be created, and the data duplicated in
both locations, Selecting a single representation may require the repetitive
use of complex code to transform the data when needed. The alternative of
multiple representations is subject to problems of data consistency.

As more processes are involved, the selection of the appropriate
representation becomes more important to insure efficiency, to insure that all
potential accesses are possible, and to insure that the stored data is what 1s
really needed by all of the accessing processes. An incorrect representation
will restrict what can be done with the data. Mechanisms are needed to select
proper representations and to isolate the physical representations from the
logical representations.

Proper techniques for selecting data representations and constructing
data access procedures permit applications to deal with data in an effective
manner without requiring extensive, complex programming due to changes of
representation, Current data management techniques applied to engineering

software systems do not provide such capabilities.

35

3.2.4 Process Integration

To integrate individual processes into a complete system the processes’
data must be integrateds The data can mnot always be in the proper
representation., Each process or subsystem will have its own desired or
required form. The data muat be transformed or "mapped" between the various
forms as it flows between processes, Many attempts at integrating programs
address this problem. In manual usage, data is output from one program and
transcribed, by hand, to the form required for the next program.

The most common integration alternative is a tightly coupled "N x N
system., In this scheme, each process has its own data storage and data
representations. The processes each communicate with all other processes,
with a data tramsformation occurring on any data communication path, as shown
in figure 3.1.a. Such an integration is very complex. The number of mappings
grows combinatorially with the number of components. A change to one process
requires the modification of "N" mappings.

An alternative 1s to provide a single common representation. The data
may either be distributed and stored with the individual processes, or it may
be stored in a central database, as shown in figure 3.1.b and £figure 3.l.c.
One transformation is needed betweemn each process representation and the
common representation.

There are a number of problems with both alternatives. One of the most
basic, for which there is no simple or convenient solution, is missing data.
A process may need some data item which does not exist in a database, but
which is logically associated with, and should be produced by, some other
process. The process which should be responsible for creating the data may
compute the data item and use it within its own processing. The data is
computed by this process "on~the-fly" as a temporary quantity, but it is not
"exported" to any other processes, and it is not available for other
processes.

Another problem is the transformation of the data between
representations. The mapping may not be possible; additionai nonexistent
data may be required to complete the transformation. Alternatively, the
mapping mey be very complex, not a gimple one~to-one transformation. Some
physical representations, such as the nodal loads example above, are
straightforward. The mappings involved in the topology representation are
much more complex. If multiple representations are present, how can it be
insured that the data is consistent in all representations? If the data is

changed 1n one location it must be changed in all locations,

Mapping

Prccess

(a) N x N HMapping

Mapping

atabase
Process

(b) N Mappings — Dustributed

Process

(¢) N Mappings — Centralized

Figure 3.l. Process Integration Configurations

37

If multiple mappings exist, there are questions of completeness and
symmetry; can any data item be transformed from any onme form to any other
form (is it possible to transform representation A to A”, but not A” to A)?

In the centralized form, there is a problem of selecting an effective
common representation for the data. The chosen data representation must
support all required data accesses, There is also the problem of efficient
access. A single form usually implies a single access path. In a multi~user
enviromment, this is a potential bottleneck.

As with selecting a data representation for a single process, selecting
an integration scheme can have a significant influence over the remainder of
the system (the system design, performance, development, and maintenance).

Effective techmiques are needed to address these issues.

3.2.5 Context and Access

Data represents a particular problem. Individual processing steps are
general engineering procedures, are independent of the particular problem, and
often are independent of the class of problem. Some data, such as
descriptions of standard components, is independent of any problem and may be
used by many processes. In applications, data is usually stored in a manner
which links the data to the particular problem being solved. Thus, if one has
a procedure which designs a beam in a single building, and 2 project involves
two or more buildings, an ambaguity exists (the context of which building in
the project is not considered in the data access mechanisms). There must be
some mechanisms for accessing the data and gugmenting the context independent
process descriptions to obtain the correct data. The current approach of
building data access paths into programs defines the context in which the data
is used. A coupling between problem dependent data and generic processes
exists, and this coupling can not be changed without changing the program.

In current programming languages, this context coupling is accomplished
through explicit linkages, either through calls to data management routines in
which context dependent information is used to access data, or through the use
of subscripts (representing context) in addressing data structures. Because
of the explicit linkages, the processes can not be used in any other context,
and they loose their value as generic procedures. A mechanism is needed to
permit the dynamic linking of the generic processes to specific problem

dependent data,

38

3.3 Control

Control deals with the issues of presenting the engineering design
process in the form of algorithms. Two basic problems are present:
(1) determining the actual algorithms, and (2) presenting the algorithms to

the computer.

3.3.1 Design Algorithms
What are the algorithms ior design? Design is a complex process, and
unlike analysis, no specific proccdures for performing design exist. There is
a general procedure of selectiun, analysis, and evaluation, but beyond this
level, the design process is ill-defined and unstructured. Each engineering
firm has its own gemeral procedures for attacking a project. Each individual
engineer has his own persomal process for design. Design algorithms are not
taught, or explicitly available. They are acquired through experience and
through observations of how others design. They often consist of assumptioas,
guesses, intuition, and implicit applications of analysis procedures and
standards,
Consider the design of a plate girder as an example. The engineer may
automatically assume an initial web thickness of 3/8", simply because he
previously designed a girder for a similar span and loading condition, and
that was the final result. To compute the remazinder of the section, he may
assume an allowable steel stress of 24 KSI. In doing so, he ir: (1) assuming
ASTM A36 steel, (2) assuming that bending governs the design, (3) assuming a
compact section, (4) utilizing a provision of the AISC Specification which
states allowable stress in bending is 0.66 of the yield stress of the
material, and (5) utilizing the ASTM standard for A36 steel which provides a
yield stress value of 36 KSI. He is utilizing his prior experience along with
assumptions and implicit applications of standards.
Alternatively, consider the following quote from a structural design text
[Gay1E72].
Shear may determine the design of beams which support heavy
concentrated loads near reaction points and of very short
(small values of L/d) beams uniformly loaded.

This presents a provisionmal rule. There is a degree of uncertainty in what

constitutes heavy, concentrated, near, and ghort. In design, the engineer is

continually dealing with such descriptions and processes, and 1s successful in

utilizing them to produce complete, detarled designs.

39

In analysis, the details of the computations are simple, well-defined,
and generally lead to a direct set of processing flow paths. In desigu, the
paths are more complex, more interconnected, and it is often difficult to
determine how to select a given processing path from a number of alternatives.
Additionally, there 1s the problem of starting the design process. Usually
some initial guesses are required. The procedure commences at some point, it
proceeds iteratively, and then 1is terminated when the design is judged
satisfactory by the engineer.

In an integrated design process, there are problems resulting from data
flow and timing. Some procedures require that certain data items be available
before they can proceed. As the number of procedures increases, the degree of
interconnection grows and can not be readily determined. Two conditionms,
termed contention and race, are possible. In contention, process A requires
some information produced by process B, while process B is dependent on some
other data produced by process A. The processes deadlock 1n contention for
the original values of the data. Once the data is determined a race condition
results. Process A can proceed but will affect the results of process B which
will affect A, ... In manual processing, these types of conditions do not
occur, The engineer will obtain needed data to perform the computatioms, and
will delay determining the effects on other data until the process has
terminated. Additionmally, he will recognize iteratioms, and will make
judgemental decisions regarding convergence, or if iterations are appropriate.

Engineering design is a loosely structured problem dealing in uncertainty
and requiring significant experience and judgement, Such judgement and
experience are difficult to codify. Conversion of design processes into

computer code is difficult, if not impossible, using current techniques.

3.3.2 Presenting the Algorithms

Once an algorithm has been defined, there remain the problems associated
with presenting the control processes to the computer. Simple procedures
consist of only equations to be evaluated. Support code must be added to
provide input, output, and resource control. As processes grow more complex,

simple equations are not sufficient, S8imple mathematical expressions such as

K, = | , 817 [0 (8] av

can not be expressed directly and require at least several lines of code to
perform the integration, in addition to all the code needed to form the base

matrices (In FINITE, the size of a complete element stiffness module doing

40

such a numerical integration ranges from 1000 to 3000 lines). As the
complexity and size of the problems grow, the memory resource limits of the
computer are reached. This necessitates more code to move data to and from
secondary storage. Soon the computational process ''gets lost" in all the
support code associated with the details of managing the data and providing
the primitives for the computations.

One solution to this dilemma is to provide "packages" of code to perform
many of the common functions (i.e., disk I/0, memory allocation, matrix
manipulation, etc.). This results in code consisting of numerous calls to
subroutines. This approach allows the programmer to become more productive by
eliminating some detailed coding, but the original problem simply reappears at
a slightly higher level of abstraction. The complexity of the programs using
such schemes soon exceed the skills of the programmers. All their effort is
spent in trying to manage resources efficiently, and not to solve the real
problem.

Support—-supervisory systems like ICES and POLO were developed to overcome
this problem. They provide a higher level language in which all control is
programmed, The support software provides data and memory management
functions so that the programmer mneed not be concerned with such details.,
However, even with these systcms for support, the program (in the higher level
language) often becomes lost im the supporting code, particularly when
manipulating complex data structures. The programmer loses sight of the real
problem.

The data and processing primitives are still at a low level when compared
to the complexity of the processes. As a result, the algorithms are difficult
to implement, with a great deal of the development effort applied to issues
other than the desired procedure. Such code is difficult to maintain, to
check, to modify, and to enhance. Alternatives to the explicit programming of

all the details of the algorithms are required.

3.4 Interfaces

As stated in section 2.2.1, interfaces are often neglected in engineering
software, even though they have a significant impact on productivity. There
are two basic problems to be resolved in providing the interfaces: (1) what
style of interfaces to provide, and (2) developing the software to support the

interfaces.

41

3.4,1 Form and Style

There are a variety of forms and styles for interfaces. The objective is
to be able to communicate the maximum amount of information in a manner best
suited to the user. The interfaces should be flexible. The user should be
able to direct the input rather than having to respond in a predefined
sequence; the user should control the process, not be controlled by the
program. Similarly, for output, the user should be zble to select the style
(tabular, graphical), content, and order of all data presented. Looking at
thousands of lines of output to select a few numbers is inefficient, tedious,
error prone, and nonproductive.

For input, the most common form currently used in engineering software is
fixed-form bulk input. This is the easiest for the programmer to provide (it
can be supported directly through programming language features), but is the
most restrictive for the user. The other extreme is natural language voice
input. Such input systems currently require dedicated computer facilities and
are state-of-the-art research. However, they do provide the fewest
restrictions; consequently they also provide the greatest possibility for
ambiguity. In between these two extremes are a variety of forms. Proble~
oriented languages (POL’s), menu driven graphical systems, and question and
answer systems are the most popular forms, At first glance, question and
answer systems appear to be useful and convenient for the infrequent user.
Basically, the wuser is prompted and lead through the input process. For
frequent users of a system, the prompting systems are boring. 1la addition to
the boredom, there are other sarious drawbacks. The worst of these appears to
be that there are no user controlled mechanisms for backtracking and
correction of erroneous input. Menu systems are graphics oriented; the user
points to one of a set of possible alternatives, Tkey are more flexible than
prompting systems, but the nunber of potential responses is limited to the
viewing avea of the screen. POL’s are the most flexible of the three. Users
communicate in a subset of natural language, with restricted syntax. The
vocabulary is tuned to the user and the problem domain, and the user has more
freedom to direct the process than with the other schemes.

The form of the interface is dependent upon the data requirements. For
input, the data may be either (1) processing and control requests, or
(2) problem and model descriptions, The latter are generally more voluminous

and require more complex input forms to reduce input requirements.

42

Similar problems exist for output. Here the two major forms of output
are tabular and graphical. Tabular output is typically provided through
programming language features., As such, the user generally has little control
over content or order. Often there is no way to suppress unwanted portions of
the output. Graphical output is much more desirable and flexible. It
requires additional processing, but yields results which are more readily
interpreted by the user. However, for graphical output, it is difficult to
determine the manner in which to present the data. Thus, there is the need to
provide capabilities to change the presentation of results for the user. In
addition to these bulk output £forms, there 18 the need to present status
information, messages, errors, etc.

Increased user productivity is possible through appropriate interfaces.
However, such interfaces are complex and require careful design to insure they

provide the necessary capabilities and are truly useful.

3.4.2 Techniques

Only the simplest interfaces can be implemented by facilities provided in
current programming languages. Development of interfaces is extremely complex
and requires the programmer to consider and resolve many issues such as device
dependency, terminal access procedures, and response criteria. To eliminate
these problems, a variety of software tools have been developed or proposed in
order to isolate many of these issues. The application interfaces are then
built using these support tools,

Support software is available for graphics [GSPC79] and input Llanguage
translation [RehaD79]. However, in both instances the tools provide only a
basic level of support. Development of the sophisticated interfaces neceded by
the applications requires a significant effort. The primitives provided by
the various tools do eliminate much detailed programming, but the level of
support provided is such that a significant amount of complex, and often
repetitive, code is required.

For example, graphics systems provide only basic drawing primitives for
line segments, characters, and viewing transformations. Development of a
complete graphics facility for FINITE would require support software to permit
the programmer to handle more abstract concepts such as surface function plots
(contour plots) or arbitrary cutting planes. To produce a contour atrees,

load, or deflection plot of an arbitrary cutting plane or surface of a

43

structure requires a complex program, with most of the detail being associated
with producing proper line segments for display. An ability to handle the
more abstract quantities at the support level is required.

Current technology provides only a first level of software support,
There is a mneed to develop additional support which will allow system
developers to deal with the enginerring nature of the applications directly,
without having to first translate all actions into device and basic operation
oriented algorithms., Additionally, there is a need to develop tools in other
areas such as tabular output and error handling; currently these functions
are being provided in a totally ad hoc manner for most engineering
applications. A complete set of tools and technigues for interfaces would
enable programmers to provide more effective interfaces with significantly

less development effort,

3.5 Computer Technology Base

The computer field continues to undergo a period of rapid technological
development. There is a continuing revolution in hardware, languages, and
systems. The effects of the ongoing computer revolution in these areas is
presented below. The basic problems in all these areas arise from the ongoing
changes.

It is necessary to configure engineering software systems so that they
are adaptable, or, due to the rapid changes, they may be outdated before they
are operational. The problem with all three aspects is to know what to
select, and how to be prepared for future changes. Complete computer software
systems are extremely costly to develop. The costs of comnstantly redeveloping
gsoftware due to technological changes in the supporting systems is mnot
acceptable,

One would like to ignore as many of the issues of selecting hardware,
languages, and systems as possible. In fact, most of these issues should not
be of concern to the end-users or to the application program developers.
However, to achieve this isolation, these issues must be dealt with in the
system software. Unfortunately, with current software techmology, there are
no formal mechanisms to deal with these problems and to minimize the effects

of change.

44

3.5.1 Hardware
Semiconductor techmology has caused the most dramatic changes in computer

technology. The largest hardware systems of less than twenty years ago cost
over a million dollars and occupied a room. Today the same processing
capability is available on a single chip, costing less than ten dollars. A
complete microprocessor system requires only a few chips, sits on a table top,
and costs only a few thousand dollars. Oun the other end of the scale, there
has been the introduction of the super computer, machines with extreme speed,
currently approaching a billion operations per second. Additiomally, there
have been continuing advances in peripherals. The end is not in sight;
prices continue to £fall and the capacity of a single chip continues to
increase.

The future of hardware to support engineering software is unforeseeable.
Engineering software must be efficient and portable, even though the nature of
hardware is coniradictory (incompatibilities and inconsistencies exist between
various hardware manufacturers and these limit portability). The lack of
concern for portability and efficiency issues has plagued prior systems.
Effective, adaptable, long~lived software must be conceived and designed to

deal with the indeterminable nature of the host hardware.

3.5.2 Languages

New computer languages comtinue to be introduced. Large numbers of
languages are continually developed for research, experimentation, and
teaching purposes. The majority of these do not become widely accepted, due
to resistance to change from users, and due to their lack of portability,
distribution, and support. The new languages provide a variety of ideas and
techniques, and one wonders how long the current mainstays, FORTRAN and COBOL,
will continue to flourish. Poseibly the most significant change in this area
is just emerging with the introduction of Ada [DoD80] by the U.S. Department
of Defense [DoD].

The choice of a language can have a significant effect on the ease of
development and reliability of software. Engineering programming currently
implies FORTRAN. Should programming in FORTRAN continue with the acceptance
of its deficiencies (particularly with respect of data structuring facilities)
in exchange for language acceptance and portability, or should there be a

switch to a new language and risk a premature end of life of the application

45

programs due to the death of, or lack of support of, or unavailability of the
base language? The benefits of any alternative langusge must be weighed

against the potential costs,

3.5.3 Systems

Original engineering programs were designed for operation in the batch
enviroomment, the only alternative. Then came the addition of time=sharing. A
number of other choices now exist, including: transaction processing,
networking, and distributed systems (these are described in more detail in the
glossary, section 5). On-line, interactive computer utilization for
engineering is essential., The choice between centralized, networked, and
distributed systems must be made. Distributing data and processing leads to
problems of interconnections and access. Centralized systems have a potential
for bottlenecks, The problem with selectinz a system form is similar to those
described above; what is the proper technology to select to provide the best

support for engineering applicationms.

46

4, TECHNIQUES FOR ENGINEERING SOFTWARE SYSTEMS

Therc are a number of techniques which appear to have promise in
developing advanced engineering software systems, These techniques
potentially provide a means to addiess and solve many of the problems
presented in chapter 3. Five techniques which appear to be most valuable are:
(1) relational database management systems, (2) use of context, (3) knowledge
based artificial intelligence systems, (4) virtual computer models, and
(5) alternative programming languages. Each of these will be discussed
separately: with respect to the technique, the problems which are addressed
by the technique, and the potential advantages and disadvantages of using the
technique, Due tn the very complex nature of some of these areas, more

detailed background information is provided in the appendices.

4.1 Relational Database Management Systeus

Database management systems (DBMS) are used to fulfill a variety of the
data handling needs of software systems, and allow the system’s developer to
concern himself with the engineering problem to be solved without dealing with
all the details of data storage, data representation, and data manipulation.
Database management systems provide a software package which is the interface
between the applications progrsm and the physical storage system. This
software allows the programmer to deal with data on an abstract logical level,
rather than at a physical level. Relational database management systems are
the most recent development in this field. Additional information on database

management is presented in appendax B.

4.1.1 Background

In the early sixties, database management systems evolved from report
generators and disk management systems [FryJ76]. The database management
systems were introduced to provide mechanisms to reduce program complexity and
development effort. Attempts to integrate programs had lead to difficulties
due to data representation and storage. Database systems were introduced to
eliminate these difficulties. Three distinct types of database management
systems have evolved: (1) Hierarchical [TricD76]}, (2) Network (CODASYL)
[TaylR76], and (3) Relational [ChamD76, MichA76, KimW79]. A variety of

47

implementations mnow exist, but most are oriented towards business
applications. Within engineering, the applications often had no database
support. If some type of support was present, it was wusually ad hoc disk
management routines, or a special purpose engineering hierarchical database
manager.

The use of a database management system helps, but it does not eliminate
all of the problems encountered, and it does introduce some new problems which
must be resolved. The relational database model is the latest and most
advanced technology available. It appears to provide a number of features

which reduce data handling problems,

4.1.2 Problems Addressed

Database management systems are used to reduce the magnitude of the data
handling problems associated with process integration and data representation.
All of the information in a database is creacted, accessed, and maintained by a
single system. As such, a data representation which is best suited to all
applications can be selected and used. No application "owns" the data, but
all access it from the database. The database manager allows each application
to have its own "view" of the data, permitting the programmer to work with a
subset of the data without knowing all the representational details of all of
the data. This feuture, along with a se" of common data operators and support
functions, such as concurrent access control, permits the applications to be
data independent; details of data management is the sole responsibility of
the database management system.

The hierarchical and network systems both have two distinct levels for
.describing the data. The lowest level is the "data mapping level," where the
data structures of the databases are described in terms of their physical
organization and structure. The higher level is the “data definition level,"
which defines the various componments of the data structures within the
database and the relations between the components. The user (programmer)
deals only with this higher, "logical level." The data is stored in logical
records, and there are certain logical interrelations between data items and
records. These relationships are represented in the logical organization and
representation of the data in the database. To access or change Lhe data, the
user must explicitly deal with all aspects of the data representation:
(1) content of records and data structures, (2) linkage (hierarchies,

networks, pointers, etc.) between data structures, and (3) order of records

48

within data structures. As a result, the applications become tied to the
"representational detail of the database, and can not deal with the data in
an effective manner. The applications are cluttered with code to access and
manipulate the database, not the data in the database. The database
organization can not be changed because the information about access is built
into the accessing programs. No matter what the programmer tries to do, he is
seldom dealing with the actual data. Rather, he is always explicitly
operating on the logical organization of fields, records, and data structures,
and is specifying all of the details of all representational manipulatioms.
Such database systems are 'representationally addressed." Although the
database eliminates much of the detailed programming and provides a common
data representation as a basis for integrating applications, the data handling
problems (as described in section 3.2) are not all resolved. Relational
database management systems attempt to solve the remaining problems by

providing another level of data independence.

4.1.3 Advantages

The objective and advantage of the relational approach is the attempt to
eliminate this last level of data representation dependence described above.
In the relational model, the user deals only with the data, not its
representation. The database is *content addressed." There is a logical
content of data groups. The user can request any information in any manner he
desires (by specifying the content of the requested data), and 1s presented
with the data in the form of a relation. The access interface to the data,
and the form of the data, is independent of the data organization and
representation. The physical database structure is unknown to the user. The
selection of storage and access mechanisms can be determined by the database
management system. The definition of different views of the data can be
constructed in a hierarchical layered fashion (relations defined in terms of
other relations), allowing the user to trcat the data in the manner he
desires, independent of the form selected for the database.

The following is an example of the data management statements used with
the POLO hierarchical database manager to access the element incidences from
the mathematical model data structures in a finite elemeni system. The
example is based on the data structures used in FINITE (the statements
correspond to the actual data structures used in FINITE, and these data

structures were chosen for efficiency in a particular type of access, and the

49

exampie depicts the bias in data structure representation). A conventional
procedural language embedded data manager would require several more lines of
code than that required by the higher level data management commands supported
by POLO, The first two commands deal only with the data representation; the

actual data is not accessed until the third command.

GET_VECTOR (INCIDENCE_VECTOR,
MATHEMATICAL_MODEL (ELEMENTS, STRUCTURE_NAME,
INCIDENCE_POINTERS, ELEMENT_NUMBER)),
GET_POSITION (INCIDENCE_POSITION,
MATHEMATICAL_MODEL (ELEMENTS, STRUCTURE_NAME,
INCIDENCE_POINTERS, ELEMENT_NUMBER)),
GET_INCIDENCE (MATHEMATICAL_MODEL (ELEMENTS, STRUCTURE_NAME,
INCIDENCES, INCIDENCE_VECTOR,
INCIDENCE_POSITION))

For a relational database management system, the request which corresponds to
the example is shown below. This request is independent of data organization

and structure.

SELECT INCIDENCES
FROM MATHEMATICAL_MODEL
WHERE STRUCTURE = STRUCTURE_NAME
AND ELEMENT = ELEMENT_NUMBER

There are four distinct advantages of the relational approach:
(1) simplicity, (2) data independence, (3) symmetry, and (4) theoretical
foundation [ChamD76].

Simplicity: The user has only the single relatiomal tuple data
structure to deal with. All accesses are independent of
storage organization, and the user deals only with data tuples,
not access mechanisms or access paths.

Data Independence: The details of the storage structure are
unknown to the user. Thus, the storage structure can be
changed without affecting any applications. Anyone can access
any data, simply by knowing that the data is present in the
database. Applications are independent of the details of the

data organization.

50

Symmetry: If the data is stored in some record oriented manner,
then there must be a traversal of the records amnd the links to
access the data. For certain requests, which do not map
directly onto the data structure, complex programming is needed
to obtain the data (e.g., going from element incidences to
nodal incidences as described inm section 3.2.3). This
complexity limits the accessibility of the data and may imply
serious performance problems. In the relational approach,
since access mechanicns and data organization are hidden, any
request can be formulated directly, and all requests are
handled equally. The database is "symmetric" with respect to
data access,
Theoretical Foundation: The relational model is based on the
mathematical theories of relations and predicate calculus.
The first three advantages address the data representation dependence problems
of prior database management systems. The last provides a formal basis for

the concepts utilized in the relational model.

4.1,4 Disadvantages

Relational database models are a new and rather untested technology, with
a number of questions concerning the viability of such systems. There are no
very large databases which have been developed using such systems, so
questions of effectiveness in large applications have been raised. Most
relational systems have been developed to do research in the design and use of
such systems. Major implementations are just being released [IBM8la, IBM81b].
Thus, there is mno large body of experience of use in the production
enviromment as there has been with the other database models.

There are also some questions concerning the operational speed and
efficiency of relational systems. The majority of the work of the database
administrator in wusing nonrelational types of database systems has the
objective of determining the data representations and access paths which will
be most appropriate for all users. The optimality criteris which are used in
the selection of the data organization are: (1) speed of access, (2) minimum
storage transfers, and (3) minimum storage space., Since the database
management system has control over selecting the physical representations and
access paths in the relational model, the system may mnot select the

appropriate representation or access mechanisms, and the result may be

51

unacceptable performance. It is hoped that the magnitude of the optimal data
representation and access path selection problem will be such that, for large
systems, the machine can produce a solution which has overall better
performance than one developed by a database administrator. For any
individual access, a "hand tuned" system may be better, but for a very large
system, the number of accesses will become so large that hand coding and hand
tuning can not be considered, and on the average, the database management
system will do a better job. (this is similar to the argument for use of
higher level programming languages as opposed to assembler languages).

Perhaps the most serious question involving the use of the relational
model for engineering applications is the question of available data
primitives. Relational systems have been developed for information retrieval
and business applications, and the data primitives are usually only names,
integers, booleans, and character strings. In fact, some relational systems
do not support real numbers. Primitive data types such as reals, integers,
characters, and booleans, and other engineering data types and data primitives
such as vectors, matrices, tensors, etc., are needed in engineering
applications (such higher level data types are not currently supported by
standard database management systems). The lack of such data types will be
restrictive, making it difficult to develop programs which require such data

types.

4,2 Context and Scope

Context and scope are not techniques, but rather, they are concepts.
They are based on the methodology used to solve engineering problems, and are
dealt with in an ad hoc manner in most applications. The formalization of the

concepts appears to be of value in solving some of the data handling problems.

4.2,1 Problems Addressed

Analytic engineering processes and standards are usually context
independent (in some fields such as nuclear power plants an individual
standard may be developed for a single project). As stated in section 3.l.l
and 3.2.5, processes and standards can be applied to any problem or project by
using the appropriate data. Their application requires the addition of
context. In applications, Lhis context information is presented in the form

of data subscraipts. In programming languages, the various data items needed

52

by the processes are stored and grouped in data structures which are addressed
by subscripts ("subscripted”) to indicate what part of the data is needed. In
access to databases, a similar method of subscripting the data structures is
used to obtain the correct information for the processes., This subscripting
is explicitly built into current application programs. Thus, the application
must have context informatiom scattered thrhughout the processes., Any change
of context requires recoding the processes, The concept of context is to
separate the context information from all processes, just to use the generic
processes., Context information would then be declared externally to the
processes. The data managemeni system can be extended to include a formal
context system, and the database manager would augment data references with
context information to obtain the correct data.

The concept of scope is also based on current procedures, but scope is
more abstract., The data which is used in any processing step is dependent
upon the type of process. In design, the same type of information is needed
in both the detailed and preliminary design phases. Approximate values,
derived from heuristics, are acceptable in the preliminary phase, but exact
values are required in final computations. In analysis, many different types
of computational processes are available which produce results under different
assumptions. In some cases the results £from one type of analysis may be
acceptable in other situations (e.g., the use of results from a nonlinear
analysis of a structure in place of results from a linear analysis). For many
processes, different representations of the same data items are acceptable at
different times. Comsider a beam in a building. For structural analysis of
the frame it is considered to be a line comnecting two points, and the overall
length 18 the only dimension of major concern. Once the beam is detailed, all
of its dimensions, and those of the connections, become significant.

The concept of scope ie to permit the application developer to state,
external to the process, the scope and range of data that are acceptable to
the process., Then the data management system can resolve all the data
requests and provide the appropriate data, to the level required by the

processes,

4.2.2 Advantages
The concepts of context and scope have advantages in all data handling
situations, The complex context information present in all data references

within a process will be reduced or eliminated. Processes will become generic

53

and can be used in any suitable context. Context could be declared globally,
and hierarchically. As projects become more complex, higher levels of context
can be added, and none of the applications will be affected.

Standards are an example of processes which are context independent. The
application of the concept of context will permit standards to be used
directly in design systems without dealing with the issue of explicit database
linkages. Completely generic standards processing could bs developed,

Scope has similar benefits of simplicity and process and data
representational independence. The details of determining the acceptable
types of data will be eliminated from the details of the process. When
combined with & data flow architecture, scope ca1 be used to control the
automatic computation of data. This will cause the more detailed and exact
computations to be deferred until explicitly required, but it will permit
these more detailed results to be used in place of other results if they are
available.

The following is an example of a conventional relational database access
used to obtain stresses in a finite element system. The request will
determine the principal element stresses for all elements of type "CST," in a
structure called "BEAM," analyzed as a linear system, and subjected to loading

condition "UNIFORM." The structure is part of one design alternative

("DESIGN_A").

SELECT PRINCIPAL_STRESSES
FROM MATHEMATICAL_RESULTS
WHERE STRUCTURE = BEAM

AND LOADING = LUNIFORM
AND ANALYSIS = LINEAR
AND ALTERNATIVE = DESIGN_A
AND ELEMENTS =

SELECT ELEMENTS
FROM MATHEMATICAL_MODEL
WHERE STRUCTURE = BEAM
WHERE ALTERNATIVE = DESIGN_A
AND TYPE = CST

54

Using context and scope, the request might be recoded as shown below. The
three context and one gscope statements (which are declared independently of

the actual data access) are:

SCOPE ANALYSIS = LINEAR
CONTEXT STRUCTURE = BEAM

AND LOADING = UNIFORM
AND ALTERNATIVE = DESIGN_A

The data request then becomes:

SELECT PRINCIPAL_STRESSES
FROM MATHEMATICAL_RESULTS
WHERE ELEMENTS =
SELECT ELEMENTS
FROM MATHEMATICAL_MODEL
WHERE TYPE = CST

4.,2,3 Disadvantages

Context and scope are simply concepts at this time. They are based on
techniques currently used in engineering, but these concepts have never been
implemented and used in engineering software. Appropriate formalisms for
using the concepts must be developed, and they must be implemented and tested

to determine their practicality.

4.3 Rnowledge Based Systems

Knowledge based systems are ome of several types of artificial
intelligence systems used to solve ill-structured problems. Engineering
design is a typical ill=-structured problem where many procedures are based on
rules-of-thumb, experience, and intuition. Knowledge based systems provide a
technique for describing such problem solving activity to the computer. A
more complete description of artificial intelligence and knowledge based

systems ip presented in appendix C.

55

4.3.1 Background

Two basic types of artificial intelligence systems currently exist: weak
solvers, and strong solvers [Ermal80]. The original work in the area was in
the development of weak solvers, Production systems are typical weak solvers.
They have no built-in information about the problem being solved, and are
c&nposed of a number of simple premise~action rulas. The production system
can accept any set of rules, and will attempt to solve the problem by
transforming a problem description from one state to another state through the
ugse of the rules (theorem proving being a typical example). Such systems
attempt generality, but are slow and unrespomnsive.

Due to the problems with the weak solvers, the strong solvers, which
contain specific domain dependent knowledge were developed. In the strong
solvers, the problem solving rules are more complex, and the problem solving
strategies, which are built into the system, are tuned to the application
being performed. DENDRAL [BuchB69], MYCIN [ShorE76], and Hearsay-II [ErmaL80]
are all examples of knowledge based systems; each of these systems being
built on the experience gained from the prior systems.

The knowledge in a knowledge based system consists of a body of rules,
provided by experts from the application domain. Each rule consists of a
premise and an action to be taken when the premise is found to be true. The
rules are based on, and operate on, the current problem state, as represented
by various data items. A controller monitors the data space, and determines
when rules are to be invoked. From the current set of applicable rules, the
controller will select those to be applied (based on problem knowledge), and
invoke the processing of the corresponding actions. The process of rule
utilization continues until some particular goal state is reached, or until
the system determines that the goal is unreachable.

The knowledge rules are data for the controller. Thus, the problem
solving data is not part of the system. The manner in which the problem 1s
solved is determined dynamically by the controller. No explicit processing
steps exist, and the problem solving strategy can be readily changed and tuned
to different problems simply by changing the rules. Advanced capabilities

permit the systems to learn and tune themselves through experience.

56

4.3.2 Problems Addressed

Much of the engineering process is ill-structured. Knowledge based
systems can be applied in many areas, and they appear to provide a valuable
technique for dealing with such ill-structuring. Specific areas where
knowledge based systems appear most promising are: (1) standards processing
and access, and (2) representing design procedures.,

Standards: Computer processing of standards has been performed by
using decision table based systems. Decision tables are a
formalism for representing a variety of conditions and actions
in a coﬁpact tabular form which can be readily processed.
Decision tables are identical in nature to the =xules and
knowledge sources of knowledge based systems; only a different
representational form is used. Thus, a standards processing
system can be considered to be a form of a knowledge based
system.

One of the most difficult aspects of standards use is
that of accessing the correct provisions. Previous decision
tables based systems have used "Switching Tables" as one method
to control access [FenvS69, GoelS7l]. Again, these decision
tables fit into the premise-action structure of knowledge based
systems. Current standards processing systems use only the
standards themselves, with no additional data or zrules whach
originate externally to the standard. Actual engineering
practice augments the standard with additional informatiom to
gain access to, and to wuse, the various provisions of the
standard. Engineers do not explicitly use all of & standard,
exhaustively checking all provisions, as is the case in some
computer based systems., Additional rules in an expert system,
based on engineering practice, could allow the system to
perform in a manner similar to the engineer. These additional
rules would describe which provisions are applicable in any
particular state. When necessary, such rules could be
suppressed, and exhaustive, rigorous compliance checking could
be performed. Techniques which are similar in nature to those
currently used can provide an intelligent approach to use of

standards in engineering computer systems,

57

Design Procedures: Design procedures do not exist as explicit
algorithms, but rather they are a body of knowledge which is
maiatained by various engineers, each having different parts of
the knowledge. Engineering activity relies on the cooperation
of these individuals to pool their knowledge and experiemnce to
determine the procedure to design an engineered sysiem. The
information which constiiutes the design process is processable
by humans, but its structure and content are not explicitly
known. Parts of it are represented by language in texts.
Other parts are based on experience and are transmitted between
individuals. All of the knowledge and design procedures are
based on determining that the design, or the design process, is
in a given state, and in this state certain conditions are true
which cause the engineer to conclude that some action may be
appropriate. This recognition of state and application of
action is exactly what a knowledge based system does. Once the
various rules have been formulated by the practicing engineer,
a knowledge based system may be used to process these rules.
The resulting system will solve the ill-structured design tasks

in a manner similar to an engineer.

4.3.3 Advantages

The basic advantage of the knowledge based systems is that they provide a
mechanism to address ill-structured problem solving tasks. The structure of
such systems provides a number of other benefits as described below.

The knowledge based systems are flexible, and are not tightly coupled to
the problem solving applications. The knowledge in such systems is expressed
as data to the problem solver. This knowledge exists as a body of
information, and it is not built into the system. Rules need not be
explicitly linked to each other, and data accesses need not be explicitly
coded. The wvarious rules can readily be chauged to tune the system to the
problem sclving task, and new knowledge and processes can be added without
impacting existing components. The knowledge based systems can even be made
to learn from experience, and to augment rules automatically.

The system can determine how to solve the problem, and the developer need
not be concerned with all the details of potential interactions and conflicts

between processing steps. A knowledge based system will determine what to do,

58

and will report on difficulties encountered during problem solving. Such
systems can explain what they are doing, and why they are performing certain
actions. Thus, the engineer can examine the workings of the application and
determine when it is failing, or when modifications to the system’s problem
solving behavior are needed.

This flexibility is very important. Appropriate rules for design are
unknown, and experience will be needed to develop systems which are usable and
perform at the level of expert engineers. A system which requires extensive
reworking when changes are required would not be responsive.

The MYCIN model [ShorE76] has been used for engineering applications. In
one direct application [MeloR78], the medical consultant was changed to a
finite element modeling consultant, simply by changing the knowledge rules.
This "consultant" is designed to assist an engineer in determining the most
appropriate modeling scheme for a nonlinear finite element problem.
Unfortunately, the presentation does not show the power of the system. The
other example is an extension of the model into component design, with the
ability for the system to learn through experience [LatoJ77]. Thus, the
technique does show promise in solving the ill-structured engineering design
problem.

The following is an example of how a knowledge based system can be
applied to standards processing (syntax and style based on MYCIN). The
decision table representation of the tension stress provision described in

section 3.1.1 is:

DECISION TABLE l.5.1.1

THREADED PART ' T — —
PIN-CONNECTED - T F
USE TABLE 1.5.2.1 *

(£, = P/Ay) £ (Fy = 0.45F) *

(£, =P/A) S (F_ = 0.60F;)

(£, = P/A;) S (Fy = 0.50F,)

59

The knowledge based form of the decision table requires a single parameter to
be defined (additional numeric data items will be required for the actual
usage of the rule). The value of the parameter will be used to select the

proper rule, and is defined as:

TENSION_MEMBER: <TENSION_MEMBER is the type of tension member>
EXPECT: (ONE OF TYPES: (THREADED_PART
PIN-CONNEGTER SIMPLE_TENSION))
LOOKAHEAD: (RULE_1.5.1.1.A RULE 1.5.1.1.B RULE_ 1l.5.1.1.C)
PROMPT: (Enter type of *:)
TRANS: (THE TYPE OF *:)

The decision table is represented as three rules., In this example, there is a

one~to-one correspondence of the rules and the columns of the decision table.
RULE_1.5.1.1.A

IF: 1) THE TYPE OF TENSION_MEMBER IS THREADED_PART
THEN: THEN USE TABLE 1.5.2.1

RULE_1.5.1.1.B

IF: 1) THE TYPE OF TENSION_MEMBER IS PIN-CONNECTED
THEN: (£, = P/A;) S (Fy = 0.45F)

RULE_1.5.1.1.C

IF: 1) THE TYPE OF TENSION_MEMBER IS SIMPLE_TENSION
THEN: (£, = P/A) £ (Fy = 0.60F)
AND: (£, = P/A,) S (F, = 0.50F,)

4.3.4 Disadvantages
There are two serious questions associated with the application of
knowledge based systems: (1) speed, and (2) development of knowledge sources.
Speed: Computers are fast when performing arithmetic computations
because the primitive operators (addition, multiplicationm,
etc.) are built into the hardware. It 1is questionable if a
computer which was programmed to perform arithmetic in the
manner of a human would be as fast as a human; the primitives

are wrong., The cognitive processes present in design may

require excessive time when performed by a classic computer
designed for arithmetic operations. Thus, with respect to
design, the computer based system must be faster than the
engineer or provide a number of benefits in order to be
successful, If it is not faster, mno advantages are gained.
Without significant benefits, simply providing all of the base
components, and letting the engineer provide all of the
expertise and control to guide the problem solving behavior
would be appropriate.

Knowledge Sources: A knowledge based system requires knowledge and
rules. Someone must develop these rules, and then test them to
determine if the system performs in an acceptable manner in a
variety of sitvations, This task will require constant
monitoring of the system and upgrading of its capabilities.,
Such tasks can be performed only by human experts, those with
the judgement and experience to determine if the computer is
performing as expected, and those who know what to do when it
is not performing as desired. There has traditionally been a
reluctance on the part of senior experts to handle such
details, and they are usually relegated to junior personnel.
For a knowledge based system to be acceptable, expert knowledge

must come from, and be maintained by experts.

4.4 Virtual Machines

The concept of a virtual machine is to provide, via software, a
computational enviromment in which the users of the virtual machine appear to
be using a dedicated piece of hardware [CanoM80, GrovL80]. The configuration
and capabilities needed in a computer can be designed and implemented using
softvare on an existing system. The capabilities present in the virtual
machine may not exist in any real system. All application programs are
written and execute on the virtual computer which provides the resources and

features not present in the host configuration.

61

4.4,1 Background

Virtual machines were created to provide computing enviromments which
were not available on existing hardware. One of the first uses was in
providing upward compatibility across new hardware systems. Introduction of
new hardware invalidated many programs which were writtem in assembler
language for the older machines. The costs of rewriting these programs, and
the time involved, presented difficulties in maintaining the ongoing
operations of facilities. The alternative to rewriting programs was to create
an emulator for the old hardware running on the new hardware. The emulator (a
virtual machine) would then execute the old programs directly, using the new
hardwzre. Thus, only one program needed to be written, and conversions could
proceed without affecting day-to-day operations.

The virtual machine concept has been extended in recent years, IBM has
introduced a complete virtual computer system which is used to configure a
proposed hardware system as a program running on some existing hardware
configuration [CanoM80]. With the inclusion of all the details of timing and
I1/0 transfers, a proposed system can be exercised and tested for performance
evaluation without the expense of configuring a real system.

An identical approach is used to provide a variety of single or multi-
user computer configurations operating omn a single real machine. In this
manner, each user has what appears to be a complete computer system for his
use. He is operating on a multi-~user system, but is never concerned with the
other users. In fact, it is possible for him to execute the virtual computer
system software, and provide a number of virtual computers, each running on
his own virtual system. The base virtual computer system is used to provide
the necessary multi-user support, and the applications can execute on the
individual virtual machines without kunowledge of the underlying support.

Engineering support-supervisory systems such as POLO {DoddR80] an DVM
[SchrE79] can be considered to be virtual computers. They provide a computing
enviromment which does not exist as a physical system, but a computer system
which would be desirable for performing engineering applications. Such
systems consist of a controller and a set of operators. These are analogous
to the central processor on a real system. However, the basic virtual machine
operators are better suited to the engineering applications. The engineering
oriented operators permit programs to be written at a higher level than if
they were written for a real machine. Virtual machines also include a memory

subsystem, and disk or secondary storage systems., The software for such a

62

virtual machine consists of a monitor or operating system and a set of
languages and their compilers. In addition to all these basic system
components, the virtual machine model provided by POLO includes a number of
features not commonly found in real systems. These include components
logically equivalent to: (1) a writable control store which allows the
applications system implementor to add new instructions to the basic
repertoire, and (2) a virtual back~end database machine along with a data
definition language and compiler which are used to provide database support

for applicationmns.

4.4,2 Problems Addressed

A major problem in designing any piecce of software is configuring the set
of basic componenis and the overall system crganization and structure so that
the software is flexible and performs the desired tasks well. The virtual
machine provides a Boftware structure model to address this problem; it
provides the basis for the software configuration. A basic machine model can
be used to provide the structure and the complete set of components with the
features and capabilities needed to develop application software.
Applications are designed, developed, and programmed for the virtual machine.
The existence of the virtual machine to provide support may yield better

structured software than ad hoc approaches.

4.4.,3 Advantages

The basic advantage of the virtwval machine approach to software
development is that it provides a sound, structured basis for the development
of software systems. Classic computer architectures have been used for over
thirty years, and although there are questions about their effectiveness
[BackJ78b], the basic von Neumann architecture is still used. By developing
virtual machines which are well suited to engineering applications based on
such a software model, all of the experience, research, and development which
has gone into computer systems development can be utilized in developaing the
basic system software.

The use of virtual machine models results in clean programs. The
applications deal only with high 1level concepts provided by the virtual

machine. Applications are daveloped using a level of abstraction which 1is

63

closer to the real problem. Thus, they do not need to deal with a variety of
details which clutter programs written in nonvirtual enviromments, and which
make development and maintenance more complex.

By separating various functions into separate machine models, a
significant portion of the complexity is eliminated, and each virtual machine
can be tailored to a specific task. Formal models for machine interfaces and
communications can be applied to these virtual machines to link the
subsystems. Many of the complex issues involved with resource management, and
other details such as providing multi-user support, can be relegated to the
system level, and are not apparent to the application developer. This
approach has proven to be of great value in developing applications such as

FINITE.

4.4.,4 Disadvantages

Such systems can become very complex. The software used to implement a
virtual machine is not simple, and its development may present difficulties.
Additionally, there is the potential problem of speed when using such an
approach, The wuse of a complete virtual machine operating at the seme level
as the host machine is several times slower than the host hardware, due to
system overhead (interpretatively simulating any operator such as
multiplication or addition 1s much slower than letting the hardware do it
directly). To be effective, the operators in the virtual machine must be

powerful enough so that the system overhead becomes negligible.

4.5 Languages

Is FORTRAN the first, last and only scientific programming language? The
question has been posed rTecently. FORTRAN is the de facto standard for
development of engineering software. Other programming languages may provide
alternative features and capabilities, but they are generally ignored by

engineering users.

4.,5.1 Background

There are hundreds of programming languages, Of these, FORTRAN and COBOL
are the industry standards £for scientific and business programming. Their
popularity 1s due to their widespread availability and standardization. This

is due to government selection of these two languages as requirements for

64

government computer systems. Both languages are quite old, dating back to the
late fifties. Through recent years, COBOL has been updated and extensive
database facilities have been added (CODASYL). FORTRAN remained unchanged for
over ten years, but now is undergoing 2 number of changes, and future language
additions and modifications may change the overall flavor of the language.

As a result of the lack of facilities in FORTRAN, COBOL, and other
languages (their designs were not based on any particular set of principles,
but they were developed to fit specific needs and hardware configurations
[BackJ78a, SammJ78]), a number of alternatives have been developed. A few of
the more common are ALGOL, ALGOL 68, PL/I, APL, LISP, Pascal, and Ada. These
are deccribed in the glossary (section 3). These languages all have a large
user community, and are available on a variety of computer systems, In
addition, there are numerous other languages, each developed to meet a
particular set of perceived needs for some particular problem domain. Many of
these languages have a number of interesting features. However, most are not
well supported, are nolL portable, and have only a limited user community —

the development team,

4.5.2 Problems Addressed

Software development is extremely complex and costly. Many of the
problems of presenting the algorithms to the machine are due to the nature of
the programming languages, due to their lack of abstraction. Alternative
languages provide features to simplify program development and yield better

programs.

4.5.3 Advantages

Each of the various languages has its own advantages. In general, each
of the languages has some particular set of features which yield better
programs, with less develovment effort, by eliminating some details of program
development. All of the newer languages have improved control and data
structuring features. Other features which some of these languages provide
and which might be beneficial include: (1) operator overloading, (2) language
extensibility, (3) language enviromments, and (4) data flow architectures.
These various features are described in the glossary (sectiom 4). Each of the
features eliminates some of the details of program development and coding.

They permit the programmers to be more productive and to deal with more

65

abstract concepts, concepts which are closer to the ©problem Dbeing
"computerized,!" rather than dealing with the detailed presentation of the
machine implementation of the process. Resulting programs are more flexible,

more adaptable, and more reliable.

4.5.4 Disadvantages

The najor disadvantages of any new computer language are the questions
regardang its acceptance and portability. The selection of a programming
language must deal with the realities of the user community. If languages are
not accepted, or if the programs can not be moved, programs may die, or the
extent of their use may be severely limited. Prior large engineering software
systems have been long-lived, and portable, well supported programming
languages are necessary to develop, maintain, and support such software.

Some languages lack particular facilities which can seriously impede
their use for particular applications. For example, in current languages,
FORTRAN lacks data structuring facilities, and Pascal lacks I/0 and separate
compilation facilities. The effort spent to overcome these deficiencies may
outweigh any potential benefits.

In other cases, the fact that the languages are new, and have not had
extensive use in large systems development, may mean that there are questions
regarding their applicability to the production environment. Large-scale
softwvare development is quite different than other types of programming
(program complexity grows exponentially with program size), and such software
is often operating at the limits of the language. In new languages without
extensive large-scale use, a potential for problems exists, and this tends to

discourage the use of the languages.

66

5. A COMPUTER AIDED ENGINEERING SOFTWARE ENVIRONMENT

In chapter 4, a variety of techniques which can assist in developing
engineering software, and which will overcome many of the current problems
were discussed. These techniques are not directly applicable for use in
developing engineering software systems. Many of the techniques are not
implemented as production software tools. Others require extcansions and
further 1esearch. Even if all of the techniques were available as production
tools, the problem of developing advanced enginecering software seystems would
not be solved. Each of the techniques discussed address only a portion of the
total problem. A complete solution will require the integration of all of the
various tools into a single framework for engineering computer applications.

The Computer Aided Engineering Software Enviromment (CAESE [kas“z]), as
proposed herein, 1is designed to be a prototype research and production
engineering computer system based on the techniques presented in chapter 4.
CAESE is neither a single system nor a collection of programs, but rather it
is a collection of system components which are shared by developers,
researchers, and users, and which are applied to all of the steps needed to
apply computers to the design and engineering process.

From the operational viewpoint, CAESE is basically e two level, three
component system., It 18 patterned after the current generation of support-
superviscry systems., However, it contains a number of new features and
concepts which are significant and which make CAESE different from its
predecessors.

The top level (the first component) 1is the application level — the
application enviromment. It consists of all of the domain specific tools,
programs, and procedures, as well as the data utilized in the computer aided
engineering process for any specific application area (each separate problem
domain has its own individval application enviromment). This level performs
the actual design and engineering computations.

The bottom level (the second component) is the system level — the system
enviromment. It consists of all of the components, data, and support software
which are independent of any application domain. This level performs no
engineering or design. However, it is used by all of the applications and the
remainder of the system (including the support enviromment) as a run—-time
support system. The application enviromments are built on the system

enviromment.

67

The third major component of CAESE (also at the bottom level) is the
development support software — the support enviromment., This component
provides the various tools which are used to develop and maintain both the
system and application levels. The support enviromment is not used to perform
or to provide run~time support for any computations. It is wused only to
create, configure, and maintain the remainder of the total system (both the
system and the application environments).

The following is an introduction to these components, the problems they
tddress, and the technologies they use. It is not meant to be a complete
presentation of CAESE. Rather it is an introduction and a "strawman" design
of the system, its features, and its capabilities. Each of the environments
will be discussed separately in the following sections, although the
envirorments are interrelated. A presentation of the overall structure and
the relationships of the enviromments and the components which comprise CAESE

follows the description of the individual enviromments.

5.1 The System Environment

The system enviromment 18 a collection of components which are wused to
provide a variety of system and run-time support features needed to solve the
problems described in chapter 3 and to form the basis of a computer aided
engineering system. Each of the components addresses ome or more of the
specific problem areas, and each is built from one or more of the various
solution techniques. The major software components of the system environment
include: (1) an engineering oriented database management system, (2) a
knowledge based system kermel, (3) a standards processing system, (4) a
complete set of interface systems, (5) a project mapagement system, (6) a
design supervisor, and (7) an overall organizational framework for all

components. Each of these are discussed below.

5.1.1 Engineering Relatiomal Datahase Management System

The engineering database management system is the common database manager
used by all applications and system components for all data handling
requirements. The database manager consists of a complete run-time database
management system, and a number of components associated with the support
enviromment (described in section 5.2) such as a data definition language,

data dictionary, and data mapping language.

68

The engineering databuse manager is basically a relational system.
However, it has a number of extensions which are considered significant for
the engineering application. These include: (1) extended data types,
(2) context and scope, and (3) data tracking.

Data Types: The existing relational systems are business oriented,
and have a limited number of data types, typically names,
character strings, booleans, and integers. For use in
engineering applications, these data types need to be extended
to include additional basic data types and other data
aggregates. The additicnal basic types would include (but not
be limited to) reals (various precisions), complex numbers, and
enumeration set types. Data aggregates would include the
traditional vector and array structures, but these would be
extended to include other structures such as tensors, networks,
and trees, These and similar types of logical data groupings
exist in engineering, and a mechanism needs to exist in the
database management system to handle such data aggregates (in
the whole as well as the individual components).

Since it is impossible to predetermine the complete set
of all possible data types, appropriate mechanisms must exist
to augment and extend the base types as needed, and to provide
more abstract types (higher level types) based ocn the supplied
primitive types — to provide a "data abstraction" capability.

Data types can not be considered just to represent a
collection of bits or words. Many of the various data items
used in engineering have some physical significance, and the
database manager imust be able to deal with the attributes which
represent the physical characteristics of the data items.
Typically, these attributes include: (1) the units of the
data, (2) default values for the data, and (3) constraints on
valid data values, Capabilities would exist in the database
manager to automatically deal with the associated attributes
while manipulating tic actual data.

Context and Scope: The features of context and scope described in
section 4.2 need to be built into the database manager. This
permits all programmed data references to be context

independent. Context and scope are declared externally to the

69

data references, either through explicit statements in the
procedural language used or through uger level commands. The
context and scope declarations are then used by the database
manager to augment each data reference to determine the actual
data which will fulfill a request.

The various data primitives can have context and scope
dependent information associated with them. This information
is used to invoke transformations, converting data £from one
form to another slightly different form automatically.

Data Tracking: Data tracking is accomplished by associating

"ingredients'" and "dependents" attributes with each data item.
These attributes declare what other data items and processes
are used to create a given piece of data — its ingredients,
and what other data items are computed from an item — its
dependents (one set can be determined from the other). Such
declarations may be either static or dynamic. The information
is used by the database manager to determine the effects of
changing a data item, and to maintain the consistency of the
data, The database manager can determine the set of data which
needs to be updated due to a change, and will invoke all of the
necessary processing to complete the update.

Data tracking attributes can be used to form the basis
for a data flow driven architecture. The database manager will
determine and compute all of the ingredients of any data item
and cause the data item to be derived automatically whenever it
is needed. Programs only need to request the desired vesults,
the database manager will provide all of the control used to
compute the results.

In addition to the database manager to support the applications, the
complete database management system must include an information storage and
retrieval component. The information storage and retrieval system allows end-
users to query, create, and update informatiom in the various databases,
without the need to write applications programs. This component utilizes the
capabilities of the interface system to provide input, and report generation

facilities to provide output.

70

5.1.2 Knowledge Based System Kernel

The knowledge based system kernel provides the mechanisms for controlling
the use of expert knowledge. It consists of a control processor and an
explanation system. Learning and knowledge integration, compcnents of a
complete knowledge based system, are part of the support enviromment.

Control Processor: The control processor is the basic operational
component of a knowledge based system. Through the use of the
knowledge sources, it determines which rules to invoke, and
monitors the various actions that result. For its operation,
the control processor must be able to access all of the
knowledge sources, and determine which are applicable in any
situation. Additionally, there must be a database access
mechanism to permit the control processor to monitor and query
the database, and to provide the knowledge sources with the
mechanisms to access the data they require for problem solving.
The data is accessed through the common database manager, but
the encoding of the knowledge sourcas msy not contain explicit
data access statements (this type of explicit coupling reduces
the system flexibility and adaptability). All linkages of data
to knowledge sources 1s encoded by generic name, and the actual
binding is deferred until execution-time.

Explanation System: Since the problem solving behavior of the
knowledge based system is not determined until execution-time,
it is necessary for the system to explain what problem solving
strategy it is wusing, ani why it selected that particular
strategy. In this way, an engineer can monitor the performance
of the system, and redirect its behavior when needed. This
redirection can take the form of changes to the knowledge
gsources, or it can consist of providing additional data which
will cause the controller to select a different problem solving
behavior. Once a solution is determined, the explanation
system will inform the engineer as to how the decisions were
reached, and he can then use this information to determine the
next step to be tsken. Additionally, such information can be
used to determine the effectiveness of the various knowledge
gsources and rules, and can provide information which is used to

improve the problem solving behavior of an applicationm.

71

5.1.3 Standards Processing System

Standards provisions are very similar to the rules in expert systems.
Thus, the structure and form of the standards processing system will be quite
similar to that of the knowledge processor. Since the standards typically
have been represented as decision tables in computer based processing, it may
be logical to continue to use this representation., This representational
difference in Lknowledge will be the major differyence betweep standards and
knowledge sources, and it may dictate that there be two different processing
systems: one for general knowvledge, and one for standards. However, it may
be the case that both processors are instances of the same system.

The standards processing system will consist of a control processor used
to govern the execution and interpretation of the standards. The control
processor must have the mechanisms tn select the applicable provisions of a
standard, just as the knowledge based system must be able to access and select
the knowledge sources. Similarly, the standards processing system will
contain a database 1link to allow the various provisions of the standards to
obtain their data from an application’s databases., An explanation system also
will be included to provide a mechanism to inform the engineer as to how-and-
why the standards processing decisions were made.

The standards processing system is designed to be independent of any
particular stendard. The standards exist as a collection of data which is
accessed and processed only by the standards processor. Since explicitly
coded linkages between processes, standards, and data do not exist, the
standards can be changed as needed, with minimal impact. This ability to
change standaxrds will require the existence of support tools, in the support
enviromment, to build the computer processable form of a standard from its

normal textual description,

5.144 Interface System

The interface system provides all of the mechanisms through which users
access and communicate with CAESE and the applications. It includes
facilities for language input, tabular and report output, graphical input, and
graphical output. There are a number of individual interface components which
can be used by the applications and other system components. They include:
(1) an input language translation system, (2) a report generator, (3) a

graphics core, (4) an error handler, and (5) a communications mechanism.

Input Language Translation System: The input language system
provides the capabilities to support the tramslation of the
variety of command and data languages which would be used by
CAESE and the applications. The system consists of three
distinct levels of software. The lowest level interfaces to
the physical devices, and preduces a stream of input characters
which is device independent. The second level takes this input
stream and converts it into a variety of basic tokens (words,
numbers, delimiters, etc.). The highest level combines the
basic tokens into higher level language constructs. All of the
languages are described in terms of these comstructs, and the
applications interface to the system to parse this level of
language input.

Only artificial (as opposed to natural) languages are
being considered. Natural language translation is still beyond
the scope of a production system. However, some of the
inferencing and implicit context techniques used in natural
language systems to produce more fluent and natural input may
be of value [WaltD78].

Report Generator: The computational procedures of the applications
can produce output which may be represented in either tabularx
or graphical form. The report generator provides the software
tools which are used to produce tabular output without the
explicit coding of output producing programs. The user (either
end~user or applications programmer) can use the report
generator to describe the content of a report along with the
physical layout and organization of the tables, The report
generator will access the requested information from the
databases and produce a report in the prescribed format.

Graphics Core: The graphics core provides basic software support
system for all graphical interactions, both input and output.
Patterned after the proposed standards [GKS79, GSPC79], the
graphics core provides a programmer interface which is both
system hardware and graphical device independent. To provide
this 1independence, there are two levels of software: a device
dependent processing level, and a device independent level.

Programs are written using the capabilities provided by the

device independent level. The graphics system converats the
requested graphical opertions into a lower level set of basic
device independent primitive operations. The device dependent
level converts these primitivies into the actual instructions
used to drive the graphics devices. It 1is advantageous to
construct another level on top of the device independent level.
The various graphics constructs provided by the proposed
standard core systems represent primitive operations, and
applications require considerable programming to provide usable
interfaces. A higher level provides graphical primitives which
are more useful in engineering. Essentially, it oprovides a
virtual engineering pgraphics machine. Thus, the common
capabilities and features required by the applications need not
be repeatedly developed for each application.

Error Handler: Errors occur throughout the execution of the
applications. Errors can be due to either incorrect data or
due to a program detecting faults and inconsistencies in its
operation. The concept of the error handler is to provide a
single system compoment which 18 invoked whenever any error
occurs. In this way, all errors are routed through a common
error handler and treated in a consistent manner. Features
such as run-time errors from batch execution being routed back
to an interactive terminal initiating the task and logging of
errors can all be isolated and programmed at the system level.
The applications need only raise error conditions; the system
18 responsible for all further interactions and processing.

Communications and Access Mechanism: The communications and access
mechanisms provides the lowest level of user interface and
communications support. CAESE 18 designed to be used
simultanecusly by a variety of users, each accessing the system
through different types of devices, In addition to accessing
the system, it is necessary for the users to communicate among
themselves. The communications and access mechanism provides
the support software for these features, eliminating the need
for any application to deal with device dependent issues or

multi-user communications.

74

5.1.5 Project Manager

CAESE is envisioned as being a project oriented system. Each application
is developed to be a design system for a certain class of engineering project,
and each individual project is handled separately, via its own databases. The
project manager is used to instantiate and supervise any project. IL is a
general purpose application, independent of any individual type of design
application. Each application s8ystem will share a number of databases,
standards, knowledge sources, and computational processes. The project
manager is used to configure the exact set of such components for any
application. Additionally, it is used to establish what users have access to
a project and what are the rights of the individual users.

In addition to establishing configuration and user control, the project
manager acts as an overall run—-time project supervisor. The project manager
maintains the status of the project, monitors all work, and is used to produce
the reports describing project work. It also enforces security, verifying all

users’ rights and privleges.

5.1.6 Design Processor

The design processor is the highest level of any engineering application
system, yet it is application independent. The project monitor 1s used to
create and monitor a project. The design processor is used to control all of
the engineers’ work on the project. It is the mechanism which the engineer
uses to communicate with the various application components, Through it he
invokes processes to establish goals and direct computations. The function of
the design processor is similar to the operating system om & computer. It
establishes and directs the various tasks to be performed, allocates resources
to the tasks, and oversees the routing of user input to the task and the

routing of task output back to the user.

5.1.7 Overall Organization

The various components described above, along with the application
modules are combined into a single system to form a computer aided engineering
application system. All of the system enviromment components are designed to
be autonomous. Just as explicit coupling between data items and processes is
not specified, there is a similar desire to uncouple the individual system

enviromment components to the grestest possible extent., Some coupling will

75

exist. Various components, such as the standards processor and the knowledge
processor, must be able to accees information from the databases, and they
will use the same databasz management system as used by any application. To
access the data, some interfaces between the components will exist, but these
interfaces will not be tightly coupled links.

Based on the success of the wvirtual computer model in earlier large
systems, it seems reasonable to select the virtual machine model as a suitable
structure for the overall CAESE organization., In the virtual machine model,
each of the system environment components are considered to be individual
virtual processors, each tailored to the specific tasks being performed. All
of the wvirtual processors which represent the system environment components
are implemented using a common kernel of support functions specifically
designed for a multiple processor virtual computer model. The support
functions provide the overall system control and the mechanismc for the system
enviromment components to communicate and interface with ome another. The
design processor described above is at the highest 1level in the virtual
system, and is used to control and coordinate all of the other processes; it
is the operating system for the virtual machines.

The CAESE system enviromment can not do any engineering without the
addition of application modules. Applications are designed and implemented as
separate components using the facilities provided by the components of the
system enviromment, Each of the appl:ications are modeled as one or more
virtual attached processors; each processor implements a particular set of
operators and performs a specific task, but all rely on the system enviromment
to perform common system functions. Thus, the overall virtual computer model
can control and support the various application components, just as it

controls the system components.

5.2 The Support Environment

Any large-scale software system can not simply be deaigned and then coded
in a programming language. There are a number of problems associated with
managing the development of the various software components., Maneging and
maintaining the symbolic form of the software (the source code
representation), and developing procedures for modifying operational programs
are not straightforward tasks. Failure to properly deal with Lhese issues has
adverse effects on software development and maintenance efforts and costs, and

can also influence the avaiiability and reliability of ayscems., In a system

76

such as CAESE, these problems are compounded by the existence of:
(1) databases, (2) standards, and (3) knowledge rules.

The support enviromment is a collection of software tools [KernB76] used
to assist in the software development and maintenance effort. It includes
severayr components: (1) software to assist in preparing standards for
processing, (2) software to assist in developing the various knowledge rules
and to incorporate the rules into the applications, (3) programming languages
used to develop the various system and applicatiom components, (4) software
used to maintain the symbolic and execution forms of the system, and (5) an
overall framework for all of these components. Each of the support

enviromment components are discussed below.

5.2.1 Standards Support

The information which represents standards is not coded into amy part of
an application which uses a standard, but rather, it is the data to the
standards processor. As such, there must be a mechanism to enter this data,
and to organize and structure the internal representation of the standards.
The simplest means of providing standards support consists of a language and
input system used to describe and input the various components of the
standard, and a database used to store the standard. The standards
administrator (the individual system level user who has the responsibility for
maintaining and managing the standards) would convert the textual form of a
given standard into 1ts language description, and use the standards support
system to enter the data and prepare the data structures used 1in standards
processing. It also will be necessary to supply an output system. The output
system provides a means to display the internal representation of the standard
as maintained by the system. Such a display could be used to verify that the
system internal representation is consistent with the desired form, and that
errors of misinterpretation have not occurred.

There are & number of problems associsted with developing a
representation for any given standard. Conversion of the textual form into
the decision tables, networks, and outlines, which have beer used to vepregent
standards, is a difficult process made more complex by the inherent ambiguity
and inconsistency in the standards. Significant research has been conducted
which addresses these problems, and a variety of techniques and prototype
tools have been developed. The development of a second generation of

standards development and analysis aids 1is now underway [FenvS579%a, FenvS79b].

77

These aids are designed to "provide a comprehensive, general set of computer

" As such, these aids are

aids for the analysis and synthesis of standards.
the integration of a number of tools, (tools which are used to convert from
the textual representation of a given standard to an internal representation)
into a complete standards development system. It is logical to consider that
such a standards development system be included in the CAESE support
enviromment, Thie software would integrate the work of developing standards
and their textual representations with the system for standards processing. A
processable form of the standard would be developed in parallel with the
textual representation. Thus, many potential problems resulting from the
misinterpretation of the standard would be eliminated.

Standards are dynamic, constantly beaing revised. An important function
of the standards support software is to aid in the changing and updating of
standards. Since the standards are data, and are separated from the run-time
standards processor, changes are made by replacing standards or individual
provisions of standards. A major problem lies in the linkage of a standard to
the remainder of the system. The standazds are implicitly linkec¢ tu the
database and to the knowledge rules and applications programs. Any change of
any of these components may result in problems if the actual linkages can no
longer be resolved at run-time. Thus, it is important that the standaxds
support system have a mechanism for determining which linkages exist, and to
provide information to che system standards administrator concerning the
pctential impact of a change on the remainder of the system (not only a

standards change, but also a database change or a knowledge rule change).

5.2.2 Knowledge Integration
Knowledge is represented as data in the knowledge sources, and it is

separate from the knowledge processing of the kernel of the knowledge based
system. As with standards, a mechanism must exist for codifying and
presenting to the system the expert knowledge used by the applications. The
knowledge support software will consist of a language to describe the
knowledge and knowledge scvurces, a database to store the knowledge, an input
processor to enter the knowledge into the database, an output processor to
display the knowledge which had already been entered into the system, and a
mechanism to determine how the knowledge rules relate and are linked to the

applications which use the knowledge.

78

Knowledge will change and must be updated, and the system must be able to
"learn", either through explicit instruction or through the automatic
accumulation and modification of knowledge based on experience [LatoJ77].
Learning through experience is performed in conjunction with the actual
processing of the knowledge. Explicit instruction may be performed alomg with
problem solving, or this may be a segregated activity. Thus, a complete set
of learning features will be available for use in both the support environment
and in the system envirorment. Similarly, explanation features will exists in
the system enviromment for run-time use, and in the support enviromment to

assist in developing and maintaining knowledge.

5.2.3 Development Tools

Standards support and knowledge integration are two specific examples of
the capebilities in the support enviromment. There are a large number of
similar types of components and tools useful in other phases of the software
development process. For example, 1t can be envisioned that CAESE uses a
number of languages developed for the specific needs of the various system
environment components. In addition to the languages for the standards and
knowledge representation, there would be database definition languages, data
mapping languages, languages to describe graphics operations, a language to
describe the physical hardware configuration, ome to describe the software
configuration of an application (the databases, standards, knowledge sources,
etc.), and a language in which the applications are writtem. Additionally,
many of the application systems will have their own end-user languages. A
separate language would be used to describe these individual application
languages. As part of the support enviromment, each of these languages
require a compiler and data or file structures for maintaining source and
object forms of the programs written in these languages.

The proliferation of all of these tools implies that the total system
will be quite large and encompass many lines of code. Maintaining such a
volume of code will be quite difficult. This problem is complicated by the
desire to maintain the code in a form which is compact (duplicate code, such
as occurs with COMMON in FORTRAN, being stored only once) and independent of
the particular hardware and software system used for execution. Software
tools will be required to assist in this code management problem. Ada has
attacked this probiem by providing a language enviromment of tools which are

used to support the development of programs, an editor tuned for the language,

79

a debugger, and a database, all grouped into a single operationel system
[FairR80]. These tools serve the sole purpose of easing the software
development burden by providing needed capabilities which are tuned to the
language. The set of development tools present in the CAESE support

enviromment form a similar software development environment,

5.2.4 Operational Tools

The operational tools are used to assist in the actual operation and use
of CAESE and its application systems, whereas the development tools are
designed specifically for system and application creation. A variety of
operational tools are needed. They include utilities to dump databases for
display, utilities for archiving databases, and a utility used to reconfigure
and remap databases if a change in the physical or logical organization
invalidates the current form.

A log reporter would also be a useful tool., It is often desirable to
maintain a running log of who performed what operation or who is responsible
for what change. The system environment interface component contains the
capabilities to create such a log. The log reporter would be used to prepare
reports and answer queries about tbe information in the log. A wvariety of
similar tools would be used to assgist in the operation of CAESE and the

applications.

5e¢2.5 Overall Organization

The various support enviromment components are designed to be application
independent. They exist as system wide capabilities used to support all or
any of the aindividual applications which require such features, The
components may be built into the applications or they may be used as stand-
alone systems.

Each of the tools is to be considered an application system of CAESE, but
an application which does no engineering or design. The various tools are all
built and configured in a manner similar to the applications (as a virtual
attached processor). They all perform some specific task, are built from the
various components provided at the system level, and are integrated into the
entire system., There is a fine line of distinction between what is a support

enviromment application and what is a design and engineering application.

80

As an example, consider both the standards support and knowledge
integration systems. Both of these components require databases to store the
knowledge rules or to store the standard provisions. Each of the databases
will be standard CAESE databases. The databases are defined using the
database languages of the support enviromment, and the system database manager
is used to provide all database functions. All of the input and output
components of the standards and knowledge support systems can use the various
interface features available in the system enviromment. 1In effect, the
standards and knowledge support components are completely dependent on the
system environment oé CAESE for their operation, and they are identical to
engineering applications in their overall siructure, their utilization of
system enviromment facilities, and their operational appearance to the end-
user. The only difference between support and applications is that the
support applications and the support enviromment are developing data and
programs which are wused in the application enviromment to support the
engineering applications, whereas actual applications are performing
engineering and design for the end-user. Through the utilization of the
various components of the system enviromment in providing software support for
other components of the system enviromment, the support enviromment, and the
application enviromment, and the similar use of the support environment in
developing applications, the total system 1s used to develop and support

itself.

5.3 The Application Environment

All of the project engineering and design is done using the application
enviromments of CAESE. The typical applications for which CAESE is designed
are each considered to encompass a large, multi-disciplimary problem domain,
rather than being a larger number of smaller, more specific applications. The
following are all potential application domains and 8ome of the major
subsystems of each:

Nuclear Power Plants: Reactor, pressure vessel, and containment
structures, cooling systems, control systems, electrical
generation, auxiliary structures, etc.

0ff Shore Platforms: Platform structural analysis and design,

fabrication, exploration components, production systems, etc,

81

Bigh-rise Office Buildings: Foundations, space layout, structural
system, vertical transportation, electrical distribution,
plumbing, environmental and e¢nergy systems, comstruction
management, etc,

Aircraft: Airframe, avionics, propulsion, flight dynamics,
navigation, etc., for some class of aircraft.

Ship Building: Hull structure, propulsion, control systems,
navigation, cargo handling, etc.

Bridges: Substructure, superstructure, construction management,
site layout, etc.

Software Development: Design of large-scale software is similar to
the engineering and design of any physical system. In this
application, the components being designed are the software
subsystems, and che design and engineering problems are due to
managing the interrelations of the compoments.

The above are typical of the types of applications for which CAESE is
intended. The applications are typified as being: (1) large-scale projects,
(2) complete engineered systems (rather than components of systems), (3) the
integration of multiple subsystems from different engineering disciplines,
(4) ill-structured problems, and (5) governed by a variety of standards.

It is not to be construed that CAESE only will be used for applications
similar to those listed above. The applications listed where all chosen
because they represent the types of large, multi-disciplinary problem domains
for which CAESE is specifically designed. Other applications, such as finite
element analysis, structural optimization, construction management, or network
planning and modeling are equally well supported by CAESE. The single
discipline or analysis oriented activities may not require all of the
facilities provided by CAESE, but there are many capabilities that will be
beneficial in developing software systems for any type of engineering problem
domain.,

Each of the specific engineering problem domains which are processed by
CAESE exist as individual application enviromments (i.e., CAESE — Bridges,
CAESE — Power Plants, CAESE — Office Buildings, etc.). Each application
environment consists of a number of individual subsystems which are integrated
to form a complete engineering design system. Various utility systems, such
as finite element analysis, which are components of many different application

enviromments are developed individually, but linked together with other

82

components to form a complete application package (this linkage need only be
done at a logical level)., Thus, each of the applications appear to be whole
in-and-unto themselves, and each may be used individually without knowledge of
any other application enviromment.

There are several compoments in each application enviromment. These
components exist for one or more of the subsystems. They include:
(1) database descriptions, (2) descriptions of standards, (3) knowledge rules
and procedures, and (4) computational and analytic procedures. The first
three of these are processed directly by the support enviromment software to
form an information base for the application. The various computational
procedures are integrated with the system enviromnment to form the complete set
of application enviromment software. This software requires the data from the
information base for its operation. This integration, performed with the
assistance of the tools of the support enviromment, results in a complete
application environment. After all of the components have been integrated and
linked into a complete application enviromment, the resulting application
system is then ready to be used for the domain specific design and engineering

problem for which it was created.

5«4 The Software Environment

Based on the preceding description of the individual enviromments which
comprise CAESE, the following presents more detail on the interrelations of
the enviromments and system components.

As statcd above, the system enviromment is the lowest level of software
in CAESE. It is built using the capabilities of the host computer hardware
and system software, The support enviromment is also at the lowest level, and
it is similarly built on the facilities of the host machine. Both of these
enviromments are dependent of each other for some functioms, such as the
support enviromment providing source code maintenance for the system
enviromment, and the system enviromment providing database management for the
knowledge integration and standards support of the support enviromment. The
individual application enviromments are built using the facilities provided by
both the system and support enviromment in addition to the facilities of the
host. Figure 5.1 shows the interrelation of the levels of the three

environments which comprise the total system.

Figure

5.1.

CAESE Configuration

S OFMr®OHKHTT P>

83

84

The relationships between the components of CAESE used in all aspects of
standards processing are shown in figure 5.2. There are two sets of standard
CAESE databases: one set is for the application’s data, and the other set is
for storing the standards. The application and the standards processor both
access the databases through the database management system for all their data
needs. Similiarly, the application links to the standards processor for all
of the application’s standards processing requirements. The standards support
software also links directly to the database management system. The
relationship between the components of the knowledge processing software 1is
similar, and it is depicted in figure 5.3. Similar in structure, the
interface component relationships are shown in figure 5.4

Figure 5.5 shows a simpliiied view of a complete application system. The
information base for the system consists of databrses for standards, knowledge
sources, project data, and application data. All databases are accessed
through the datsbase management system. The remaining system environment
components (standards, interfaces, and knowledge processing) comprise the next
level of software (the internal structure of these systems has been eliminated
from this figure). Support enviromment components are not shown since they do
not contribute to the run-time structure of the system. The application
software modules are then built on the top of the system level. The user then
accesses the applications, which remain under the control of the design

supervisor and are monitored by the project management system.

Application

<« Program Flow
e Data & Requests

Applicati?n Modu}es
(]

7

T
1)
1
|
1

Standards Link I DBMS Link ¢

1
Standards System
Support System Standards Processor
Application Link
- L) - 3 L1 3y
1) t
1 : | |
1 1 | |
1 L ! |
“|DEMS Link DBMS Link]
Database
Management [System
Control
Data Model
Storage
Model
[Host System bl
Information Base
Standards Databases | Application Databases

Figure 5.2. Standards Processing System

=+——= Program Flow

ewm——e Data & Requests

Knowledge Based System

Application

et B

]
Application Modules 1
1 1 1

i
Knowledge Link DBMS Link

Support System

Knowlaedge Processzor

Application Link

-.—;——— 4~ H

H t |

i i

' A L

DBMS Link DBMS Link T
Database|Management System
I Host System

Information Base

Knowledge Dat

abases

Application Databases

Figure 5.3.

Knowledge Processing System

86

Application

Application Modules
1

! 1
Interface [Link p

“——esm Program Flow

Data &
Requests

Om——)

Interface System
ir Langua e_Translat:;Lon Graphics
Logget Report Generator
Language | Virtual
Level Machine
Token Device
Level Independen
Character Devi.ce
Level Dependent

Database{Management S‘Ltem
[}

Host System I

Information Base
Input/Output Devices

) —

"l | —

Figure 5.4, Interface System

87

=%—g» Program Flow

e~————eData & Requests

CAESE System Environment

Application

Application Modules

System Environment Link

Design
. Processor
/ // A \
/ L4 \ \
Knowledge Standards Project
M
Proceisor | » Proce?sor anager ’f/

/

! I

Intefface Sﬁstem

/

re

“
Database Management System ,,—”'—’
|

//

4

L

Host System

Information Base

Standards

Knowledge

Project

Application

Figure

545,

Input/Output
Devices

|
s

Application System

a8

89

6. DISCUSSION

In the preceding chapters, a number of problems limiting the development
of edvanced engineering software, and a number of potential solution
techniques for these problems were presented, A description of CAESE, a
proposed prototype for the next generation of engineering software systems was
also presented. The following is a discussion of the proposed solution
approach, what prospects there are for the implementatioun of a system like

CAESE, and what problems sf:ill remain to be solved.

6.1 Why the Problems are Currently Unsolvable

Each of the problem domains described in chapter 2 has a relatively
simple and straightforward description. The descriptions are intentionally
vague and rather general; they are first level descriptions of very general,
open-ended applicatiovms. The purpose of the gererality was to insure that the
solutions would nov be over—constrained. The solutions should reflact the
generality and open-ended nature of the problem domains. In this way, they
will be adaptable and applicable in both current and future design and
engineering problem solving enviromments,

In addition to the two problem domains, a number of technical problems
were described in chapter 3. These problems result from the scope and the
generality of features desired in engineering software systems (including
those which implement solution systems for the problem domains). Complete
solution systems for the two problem domains would represent state-of-the-art
engineering software systems. If such solution systems were implemented, they
would contain features which are not available in current applications. Due
to the generality of the solutions and the current state of software
technology for engineering systems, it does not seem to be feasible to develop
acceptable solutions for the two problem domains without addressing the
technical problem areas described in chapter 3.

The basic itechnology to provide the solutions to these problem areas is
available, either as techniques which are currently used in engineering
software systems, or as techniques which can be taken from computer science
research. Even though the technology and some prototype tools exist, nothing

is available for direct use in, and application to, the problem domains,

¢

90

Adaptations will take time; the techniques must be tailored to the
engineering enviromment and converted into production software tools.

Basically, there is no framework for developing software for genersl

purpose, open—ended problem domains similar to those described in chapter 2.
The current software technclogy has been applied only in a limited number of
areas, Integrated, multi-disciplinary, engineering design software systems do
not exist., There are no large-scale production engineering software systems
using techniques such as knowledge based systems or relational databases.
Most applications of these technologies are still in computer science
research,

There appear to be two potential solution approaches for developing

advanced engineering applications and computer based design systems:

Brute Force: In this approach, software systems are developed to
solve the specific problems at hand. Such systems would be
conceived to solve only these problems, and they would be based
on the direct applications of current tools and techniques.
These systems will work; they will solve the problems
described earlier; but they will do no more. Such solution
will tend to be unresponsive, cumbersome, and complex. The
brute force approach would be a continuation of what the
profession is currently doing — developing ad hoc programs.

This approach has not solved the problems, nor has it overcome
the difficulties associated with developing general design and
engineering systems (some of the various issues such as
standards processing have been known for several years, and
production systems have not yet been developed). There is no
reason to believe that a continuation of this approach will be
successful in the future. Attempts at solutions based on the
brute force approach have produced more problems rather than
solutions (that is how the work described herein evolved).
These attempts resulted in a better understanding of the
problems, and this has led to a4 mnew set of issues Lo be
resolved.

A major part of the problem of developing advanced
engineering software is mnot with the variety of technical
issues, but xather, it is with the solution approach. Ad hoe,

rigid solutions do not work for genmeral, ill-defined, open-

91

ended problems. The current solutions are rigid, unadaptable,
and inflexible because they are based on technologies which are
rigid, inflexible, and do not provide the means to address
open-ended, ill-derfined problems.
Sophisticated Software: This approach 1s based on the concept of
developing a new software techno}ogy base which is respomsive
and addresses the specific problem areas which 1limit the
development of computer applications for engineering. This
approach is based on the application of sophisticated, state-
of-the-art software techniques. The goal is to produce
general, open-ended, extensible, responsive solutions., With
such a system, it should be possible to address the open—ended,
ill-structured problems currently limiting the development of
engineering applications. CAESE is designed to be such a
systenm.
The approach of extending the software technology base,
and providing a more sophisticated software enviromment, is
identical to what was done in the development of the support-
supervisory systems. These systems were developed because the
then current brute force approach to software development did
not successfully meet the needs of engineering applicatioms.
The use of a sophisticated software technology has been successful in the
past. FINITE provides an example of the usefulness of such an approach.
Software complexity measures [WaltC77, SchnV78] indicate that a system like
FINITE (120000 lines of code, 1500 subroutines) should require 406~413 man-—
nonths of development, with a project duration of 20-23 months (these values
are based on conventional programming practice, i.e., the brute force
approach, and may have a margin of error of 40%). 'This estimate does mnot
account for the fact that FINITE would be significantly larger (2-3 times) if
developed without the use of POLO, using the brute force approach. This size
increase 1implies a development effort of 768~1236 man-months. The actual
development effort was approximately 100-150 man-months (accurate data is not
available, but the development team consisted of & individuals each
contributing 2-3 man-years). Thig is effectively an order of magnitude
reduction. A major portion of this reduction can be attributed to the use of

the advanced software technology provided by POLO.

92

The use of the appropriate technology serves to reduce the complexity of
the software product, and it permits software with advanced capabilities and
features to be more readily developed. The continuation of the development of
advanced software support technologis: appears to be a viable approach to

solving the current problems.

6.2 Application to the Problem Domains

The various solution techniques discussed in chapter 4, and CAESE, as
described in chapter 5, are designed to address the various aspects of the two
problem domains of chapter 2. The following is a short description of how
these techniques and CAESE will help in the development of computer

applications for these two problem domains.

6.2.1 Problem A — A Computer Aided Design System

CAESE is designed to meet the needs, and to respond to the problems,
described in section 2.1, and it contsins many of the features and
capabilities outlined in sectiom 2.,1.3. It is directly applicable to the
computer aided design system problem domain. If CAESE ezisted, it could be
used to develop and support the advanced design and engineering software which
is needed by our profession. The significant features of CAESE, relative to
this problem domain, are the use of knowledge based systems and relational
database management.

The use of a knowledge based system permits the problems associated with
developing a solution to the ill-structured design problem to be addressed.
Knowledge based systems provide a mechanism: (1) to represent dasign
algorithms, and (2) to perform standards processing including access to a
standard’s provisions and feedback from couputations. A knowledge based
system approach to engineering software provides the flexibility and structure
to develop a system which is adaptable. Since a knowledge based system will
determine its own problem solving strategy, and since the linkages between the
various problem solving components and data items are weak, the use of
knowledge based systems yields the types of adaptable, flexible, and
extensible systems which are needed for a computer aided design application.

The use of an extended engineering relational database management system
provides the mechaniems to address all of the various problems associated with

data handling and data integration. Since the data is content addressed, and

93

accesgses from the application to the database are weakly coupled, the
resulting engineering software system is flexible and extensible.

Besides having the basic components, form, and structure to address the
needs of design and engineering applications, CAESE has a number of specific
features which are useful for this problem domain. The various interface
features, project management system, and software development and support
enviromment all assist in developing advanced applications with less work.
These, and other features such as the information storage and retrieval
componant of the data manager, provide a total system which 18 well suited to
the needs of the engineer, and which has a number of components which need not

be developed for every application.

6.2.2 Problem B — User Interfaces for Finite Element Systems

CAESE is not directly applicable to the finite element interface problem
domain described in section 2.2. One of the requirements for the interfaces
was that the kernel finite element system be FIRITE. FINITE relies on POLO
for its support, and a change to a different base system would be equivalent
to redeveloping the application. In fact, the features of CAESE are such that
a simple, direct conversion would not be appropriate. However, the
development of a finite element application based on CAESE would be
significantly simpler, the resulting code would be cleaner and less cluttered,
and it would require less effort than was spent in the development of FINITE.
The development of FINITE was aided by the existence of POLO and the features
it provides. CAESE may be considered to be a successor to POLO; it provides
features which would further simplify the development of a finite element
application.

In CAESE, there are a variety of features to support user interfaces.
The basic graphics components and an extensible graphics core would simplify
the graphics programming task. An extended set of imput language translation
features would also ease the development of the user interfaces, and would
permit more work to be performed by the system supplied software, ONther
features, such as a single error handler and the logger built into the system,
would fulfill needs and provide a more wusable system. CAESE provides the
features needed to develop a finite element system which will have the

capabilities, and which will respond to the needs, described in section 2.2,

94

In addition to the interface features, the other capabilities of CAESE
are potentially useful, and may lead to a finite element system with a rather
different structure. Consider the use of the data tracking features in the
data manager. This capability, combined with a goal directed, data flow
architecture system design could be used to eliminate all of the program
development associated with controlling the computatiomal process., Associated
with individual processes would be declarations of data requirements and data
products. A program goal of a set of final results, as requested by the user,
could be established. The system would then automatically determine, based on
the relationships between data items, which data items need to be computed in
what order to arrive at the final, requested results. The majority of the
conventional programmirg for implementing the problem solving strategy is of
the form "do this, then do this, then this, etc." All of the overall
programming strategy of this type would be eliminated. Changing the
relationships between data aitems would change the program £flow without
requiring the reprogramming of the algorithms., This is extremely useful and
powerful, since it permits complex processing to occur without the direct
programming of any of the complex linkages.

Other features of CAESE, such as the relational form of the database
would eliminate much detailed programming. Much of the complex code used to
transform one data representation to another representation would not be
needed. Other capabilities, such as operator overloading could also reduce
development effort and code complexity. Simple, direct encoding of matrix,
tensor, and other types of engineering operations in a programming language

permits it to regain some of the elegance and conciseness of our mathematical

forms,

6.3 Unresolved Issues

A system like CAESE is not a cure-all. There are a number of issues
which have not been resolved., The two most important unresolved items appear
to be: (1) the selection of a computer technology base, and (2) social and
legal acceptance problems. The following discusses these issues, but it does

not provide any solutions.

95

6.3.1 Computer Technology Base

The problems due to the rapidly changing computer technology base were
presented in section 3.5. Section 4.5 and the glossary (section 4 and 5)
presented a number of computer languages and language techniques which could
assist in producing better software, but the prototype design of CAESE does
not address any of these issues. Nothing in the design of CAESE is oriented
towards a particular language, a particular hardware configuration, or a
particular systems approach. The only requirement is that the system be
oriented towards interactive usage.

The system, indeed any new application, should be designed to function in
a variety of hardware and systems enviromments. This is necessary for it to
gain widespread acceptance and use, to be adaptable, and to be long-lived.
Machine and operating system dependencies are inevitable. The objective is to
minimize these dependencies, aud more importantly, to recognize what types of
machine dependent features are needed, and to isolate these. Igolation does
not eliminate such problems, it only localizes them, and reduces their impact
on the remainder of the total system.

Potentially, a more important issue is the selection of a programming
language. Each of the different languages have a number of features which are
potentially beneficial and others which may be detrimental. It is desirable
to develop the complete, detailed system design without being concerned with
an implementation. In this way, biases towards a particular language can not
manifest themselves in the final system structure. Once the complete design
is prepared, an evaluation of the then current, applicable languages can be

made, based on the actual needs.

6.3.2 Social and Legal Issues

A system like CAESE provides the engineer with am approach to computer
based problem solving which ie quite different from that commonly in use
today. As a result, it is expected that there will be considerable resistance
from the engineering community to the acceptance and use of any system like
CAESE. The system presents a radical change (that of a totally integrated,
computer based, engineering enviromment), and organizations resist change.
The various political, organizatiomal, and social problems [K1inR80, KeenP81]
all present serious questions about the attempts to improve computer usage.
An engineering computer system, and the resulting improvements in engineering,

can be readily justified in terms of their savings and their producing better

designs, but this does not imsure acceptance. Engineers are accustomed to
their current practice. They traditionally have not been responsive to
innovations in the design process. Introduction of techniques and changes in
procedures and standards have been slow to be accepted. There is no reason to
expect that a new approach to computer applications should be received
differently.

The use of a computer based design system also poses serious legal
questions. When design work is performed by a computer, who will tzke legal
responsibility for the design. Engineers may be reluctant to approve work
which they did not personally perform. It will be impossible for the engineer
to verify all computations and results. It will be equally difficult to
verify that the software is error free, and the host hardware is performing
without errors. The software developers will be reluctant to accept legal
responsibility for their systems (currently software is released with a
disclaimer absolving the sofitware developer frym all responsibility and
placing this responsibility on the user). This problem is complicated by the
inclusion of standards processing. The computer implementation of a standard
is a representation of the legal requirements for design and engineering. The
interpretation problem of expressing the machine processable form of the
standard now has legal implications. All of these legal questions regarding
liability due to the use of a computer based design system will affect the
acceptance of such systems.

It is important that such problems are recognized, and if possible,
prepared for. These issues should not deter the development of a new approach
to engineering computer applications. The various techmical problems continue
to exist, and there is the need to anticipate the future needs of computer
usage within the engineering profession, regardless of professional

acceptance.

6.4 Conclusions

The comput.er is a powerful engineering tool. However, as discussed, its
utilization is well below its potential. Thisg underutilization is not due to
a neglect of its power, nor is it due to any explicit desire not to have the
computer do more. The applications which the profession is now trying to
computerize are much more complex and ill-structured than any attempted in the
past. In attempting to develop these new applications, it is necessary to
push the technology which represents how engineering processes are

computerized to its 1limits., The technological limits of the current

97

generation of software used to support engineering applicgtions are now being
reached. New engineering application systems will exceed the capacity of the
current software tools and support-supervisory systems, and will require
capabilities which are not present in these systems. Pushing the applications
beyond the capabilities of the techmology only cesults in serious problems.
Current problems result from trying to develop computer systems for the
eighties and beyond based on the technology developed and uged in the sixties.
This is a hopeless situation. Indeed, attempts at developing advanced
features in current computer applications based on the curreni technology have
not been successful.

This lack of success in developing advanced engineering applications 1is
based on the lack of a suitable technological base for engineering software
systems. Computer science research has developed a number of new techniques
and concepts which can be utilized in engineering applications. Engineers
have done little to incorporate these ideas into their work. Computer science
researchers have done mnothing to address the engineer’s problems. The gap
between engineering problems and the current technology used to solve these
problems, and between thie technology and the state-of-the—-art technology
increases. These relations are depicted in figure 6.1 (revised from
figure 1.1).

Knowledge based systems, relational database management and other topics
from computer science appear to be beneficial to solving the types of
technological problems which are appearing in the attempts to develop advanced
engineering software systems. It is time that the engineering professiomn take
these techniques and convert them into a set of software tools which are
applicable to engineering and engineering problems. Software tools designed
for dealing with loosely structured, ill-defined problems appear to be a
viable approach to solving the current engineering software development
problems. These tools can form the basis for the next generation of
engineering software system.

Two choices exist for the profession; ome is to mneglect advances in
computer technology, developing ad hoc engineering applications as in the
past, The other is to try to select what is useful from the computer science
research community, and adapt it to the needs of the engineering profession,
The desire for advanced features and capabilities in engineering applications
will dincrease, and wiathout changing the current approach to engineering
software development, there is no way to meet these desires and to fulfill the

future software needs of the profession,

Software Complexity

Requirements /
N

Z ‘/ —CApplied Technrology

// ’
/’/ Available Technology

Time

Ffigure 6.l. Software Techmnology

98

99

6.5 The Next Step

The various technologies and the preliminary design of CAESE are just
that, technologies and a preliminary design. They represent only the firsat
step along the road to changing the current approach to the development of
engineering computer applications. The ideas presented herein form the
starting point for the development of the mnext generation of engineering
computer systems. A logical next step would be to proceed with the
development of this next generation of software.

This step is going to be long and difficult, consisting of overlapping a
number of phases, as described below. A work schedule for an implementation
of CAESE and a first application is shown in figure 6.2, The bars on the
graph are in correct proportions to each other, but an absolute time scale has
been specifically excluded. It is too early to accurately estimate Lhe total
effort involved, but it can be expected that the resulting system will be on
the order of many temns of thousands of lines of code (50000~500000) and a
total effort being measured in tens of man—years.

The first phase will be to review the preliminary design, and to obtain
more information on the details of current relational database management and
knowledge based systems, since these two areas are changing rapidly. Then it
will be necessary to select aspects of all of the technologies which are most
applicable to the engineering problem domains, and to proceed with a complete,
detailed design of the prototype version of CAESE. The second phase will be
an implementation of the prototype system. With such a system, the actual
viability of the approach can be tested. The prototype must then be
evaluated. Minor changes can be made as the next version of the system is
developed. If major problems are encountered they must be resolved and
further testing done. The third phase will be the development of a complete
version of CAESE, with all the "bells and whistles." This version will be
used to support the first application.

Once the complete, detailed design of the production version of +*he
system software is available, the design and implementation of the
applications can proceed. An appropriate first application must be selected.
The problem domain must be sufficiently large to exhibit all of the various
problems described earlier, yet it must not be so large thal the scope will be
beyond what can be handled successfully in the first test. The significance
of this first application can not be underestimated. The techmnical acceptance

of the system will uot come from the design of the base system. The true

Testing

Information Knowledge Sources
g Base
e Standards
3
-t
he
&
<
Implementation
Selection Design
luplementation Final
Design
Design Phase
w
@
5 Testing Implementation
Phase
Implementation
Design Preliminary
Design
Review Phase
Time

Figure

6.2, CAESE Implementation Schedule

100

1ol

acceptance will come only from the application (the previous support-
supervisory systems are best known for their major applications, not for the
systems themselves).

Once an application has been selected, it must be implemented. This will
require the design of the application system and its subsystems. Along with
the development of code of the application will be the development of the
processable forms of the various standards which will be used. S8imilarly, the
various knowledge sources and the rules which determine how the system will
operate must be developed., All these pieces can then bc integrated to
complete the application. A% this point the application will be ready for
full scale testing. Actual engineering problems, those for which existing
solutions are known, must be redesigned using the application system.
Comparisons with the existing solutions will determine how well CAESE and the
application perform, if they are usable, if they have technical problems
(eithez in the application or in the base system), or if they are too costly
and unresponsive. Then will be time to step back and analyze what has been

created, and to determine what the future might be.

6.6 Epilogue

We keep talking about it.
We say we want it.

We say we are going to do it,
But we never make any real progress.

Maybe it is hard.

Maybe we are zfraid of it.

ACI71

AISC70

AISC80

AlwoR72

AstrM76

BackJ78a

BackJ78b

BaerA79

102

REFERENCES

———————, Building Code Requirements for Reinforced Concrete,
(ACI 318-71), American Concrete Institute (ACI), Detroit, Michigan,
1971.

"Specification for the Design, Fabrication and
Erection of Structural Steel {for Buildings," Manual of Steel
Construction, Seventh Edition, American Institute of Steel
Construction (AISC), New York, 1970.

"Specification for the Design, Fabrication and
Erection of Structural Steel for Buildings," Manual of Steel
Construction, Eight Edition, American Institute of Steel
Construction (AISC), Chicago, 1980.

Alwood, R. J, and Maxwell, T. O°N,, "GENESYS — A Machine
Independent System," Proceedings, Colloque International sur les
Systémes Int&grés en Génie Civil, Principes et Description Générale
des Systfmes Intégrés, [International Colloquium on Integrated
Systems in Civil Engineering, Principles and General Description of
Integrated Systems], Editeur G. Deprez, Centre d“Ftudes pour la
Promotion des Ordinateurs dans la Construction [Center of Studies
for the Promotion of Computers in Comstruction (CEPOC)], Université
de Liége, Liége, Belgium, Vol. 1, No. 1.1, April, 1974.

Astrahan, M. M., et al., "System R: Relational Approach to
Database Management," ACM Transactions on Database Systems (TODS),
Association for Computing Machinery (acM), Vol. 1, No. 2,
pp. 97-137, June, 1976.

Backus, J., "The History of FORTRAN I, [1, and III," Preprints,
ACM-SIGPLAN, History of Programming Lapguages Conference, SIGPLAN
Notices, Special Interest Group on Programming Languages of the
Association for Computing Machinery (SIGPLAN-ACM), Vol. 13, No. 8,
pP. 165180, August, 1978.

Backus, J., "Can Programming Be Liberated from the von Neumann
Style? A Functiomal Style and Its Algebra of Programs,"
Communications of fhe ACM (CACM), Association for Computing
Machinery (ACM), Vol. 21, No. 8, pp. 611-641, August, 1978.

Baer, A., Eastman, C., and Henrion, M., "Geometric Modeling: A
Survey," Computer Aided Design, Vol. 11, No. 5, pp. 253272,
September, 1979.

BellK73

BogeR75

BuchB69

BurnB78

CanoM80

ChamD76

DateC75

DaviR77

DeMiR79

DoD80

DoddR78

103

Bell, K., Hatlestad, B., Hansteen, O, E., and Araldsen, P. O.,
NORSAM; A Programming System For the Finite Element Method, User’s
Manual, Part 1, Genmeral Description, Selskapet for industriell og
teknisk forskning ved Norges Tekniske Hogskole [The Engineering
Research Foundation at The Norwegian Institute of Technologyl,

Trondheim, Norway, February, 1973.

Bogen, R., et al., MACSYMA Reference Manual, Laboratory of
Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1975.

Buchanan, B.,, Sutherland, G., and Feigenbaum, E. A., "Heuristic
DENDRAL: A Program for Generating Explanatory Hypotheses in Organic
Chemistry," In Machine Intelligence 4, American Elsevier, New York,
1969.

Burner, B.,, Ives, F., Lixvar, J., and Shovlin, D., "The Design,
Evaluation, and Implementation of the IPAD Distributed Computing
System," Proceedipgs, American Society of Civil Engineers Conference
on Computers in Civil Engineering, Americamn Society of Civil
Engineers (ASCE), Atlanta, Georgia, pp. 126—144, June, 1978.

Canon, M. D., et al., "A Virtual Machine Emulator for Performance
Evaluation," Communications of the ACM (CACM), Association for
Computing Machinery (ACM), Vol. 23, No. 2, pp. 71-80, February,
1980.

Chamberlin, D. D., "Relational Data-Base Management Systems,"
Computing Surveys, Association for Computing Machinery (ACM),
Vol. 8, No. 1, pp. 4366, March, 1976.

Date, C. J., An Introduction to Database Systems, Addison Wesley,
Reading, Massachusetts, 1975,

Davis, R., "Generalized Procedure Calling and Content-Directed
Invocation,”" SIGPLAN Notices, Special Interest Group on Programming
Languages of the Association for Computing Machinery (SIGPLAN-ACM),
Vol. 12, No. 8, pp. 4554, August, 1977.

DeMillo, R. A., Lipton, R. J., and Perlis, A. J., "Social
Processes and Proofs of Theorems and Programs," Communications of
the ACM (CACM), Association for Computing Machinery (ACM), Vol. 22,
No. 5, pp. 271-280, May, 1979.

, Reference Manual for the Ada Programming Language,
Defense Advanced Research Projects Agency (DARPA), United States
Department of Defense (DoD), Washington, D.C., June, 1980.

Dodds, R. H., Jr., Lopez, L. A., and Pecknold, D. A., Numerical
and Software Requirements for Ceneral Nonlinear Fanite Element
Analysis, UILU-ENG-78-2020, Civil Engineering Studies, Structural
Research Series, No. 454, Department of Civil Engineering,
University of 1Illinois at Urbana-Champaign, Urbana, Illinoas,
September, 1978.

DoddR80

EastC76

EastC77

EastC30

Egel074

Ermal80

FairR80

FalkA73

FalkA78

FenvS64

FenvS66

104

Dodds, R. H., Jr., and Lopez, L. A., "A Generalized Software
System for Nomlinear Analysis,”" Advanced Engineering Software,
Vol. 2, No. 4, pp. 161—168, 1980.

Eastman, C., Lividini, J., and Stoker, D., "Database for Designing
Large Physical Systems," Workshop on Computer Representation of
Physical Systems, Carnegie—~Mellon University, Pittsburgh,
Pennsylvania, August, 1976,

Eastman, C., and Henrion, M., "GLIDE: A Language for Design
Information Systems," Computer Graphics, Special Interest Group on
Computer Graphics of the Association for Computing Machinery
(SIGGRAPE~ACM), Vol. 11, No. 2, pp. 24-33, Summer, 1977.

Eastman, C., GLIDE2 User’s Manual, Institute of Building Sciences,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1980.

Egeland, O., and Araldsen, P., "SESAM-69, A General Purpose Finite
Element Program," Computers and Structures, Vol. 4, No, 1,
pp. 41-68, January, 1974.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R.,
"The Hearsay-I1I Speech-Understanding System: Integrating Knowledge
to Resolve Uncertainty," Computing Surveys, Association for
Computing Machinery (ACM), Vol. 12, No. 2, pp. 213-253, February,
1980.

Fairley, R. E., "Ada Debugging and Testing Support Envirooments,"
Proceedings of the ACHM~SIGPLAN Symposium on the Ada Programming
Language, SIGPLAN Notices, Special Interest Group on Programming
Languages of the Association for Computing Machinery (SIGPLAN-ACM),
Vol. 15, No. 11, pp. 1625, November, 1980

Falkoff, A, D., and Iverson, K. E., "The Design of APL," IBM
Systems Journal, International Business Machines (IBM), Vol. 17,
No. 4, pp. 324334, July, 1973.

Falkoff, A. D., and Iverson, K. E., "The Evolution of APL,"
Preprints, ACM-SIGPLAN, History of Programming Langusges Conference,
SIGPLAN Notices, Special Interest Group on Programming Languages of
the Association for Computing Machinery (SIGPLAN-ACM), Vol. 13,
No. 8, pp. 47-57, August, 1978.

Fenves, 8. J., logcher, R. D., and Mauch, S. P., STRESS — A
Usexr’s Manual, MIT Press, Cambridge, Massachusetts, 1964,

Fenves, S, J., "Tabular Decision Logic for Structural Design,"
Journal of the Structural Division, American Society of Civil

e ————— e —— S ——————ora—

Engineers (ASCE), Vol. 92, No. ST6, pp. 473-490, December, 1966.

FenvS69

Fenvs73

FenvS79a

FenvS79b

FryJ76

GAO80

GarxC74

GaylE72

GKS79

GoelS71

GrovL80

105

Fenves, S. J., Gaylord, E. H., and Goel, S. K., Decision Table
Formulation of the 1969 AISC Specification, Civil Engineering
Studies, Structural Research Series, No 347, Department of Civil
Engineering, University of Illinois at Urbana~Champaign, Urbana,
Illinois, August, 1969.

Fenves, S. J., "Representation of the Computer—Aided Design
Process by a Metwork of Decision Tables," Computers and Structures,
Vol. 3, No. 5, pp. 1099-1107, September, 1973.

Fenves, S. J., Performance Requirements for Standards Processing
Software, R—79—111, Department of Civil Engineering, Carnegie-Mellon
University, Pittsburgh, Penmsylvania, Also available from National
Bureau of Standards (NBS), NBS GCR 80—257, United States Department
of Commerce, Washington, D.C., April, 1979.

Fenves, S. J., Functional Specifications for Standards Processing
Software, R-120—679, Department of Civil Engineering, Carnegie~
Mellon University, Pittsburgh, Pennsylvania, Also available £from
National Bureau of Standards (NBS), NBS GCR 80-258, United States
Department of Commerce, Washington, D.C., June, 1979.

Fry, J. P., and Sibley, E. H., "Evolution of Data—-Base Management
Systems," Computing Surveys, Association £for Computing Machinery
(ACM), Vol. 8, No. 1, pp. 742, March, 1976.

———————, Use of Computers by Firms Providing Architect—-Engineer
Services to Federal Agencies, LCD-81-—2, United States General
Accounting Office (GAO), Washington, D.C., October, 1980.

Garrocq, C. A., and Hurley, M. J., "The IPAD System: A Future
Management / Engineering / Design Enviromment," Proceedings of the
Design Automation Workshop, Institute of Electrical and Electronics
Engineers (IEEE), Vol. 11, pp. 327-334, June, 1974.

Gaylord, E. H., and Gaylord, C. N., Design of Steel Structures,
Second Edition, McGraw-Hill, New York, 1972.

» Information Processing Graphical Kernel System (GKS)

i | S ————. S————— S— tm——

Goel, S. K., and Fenves, 8. J., "Computer-Aided Processing of
Design Specifications," Journal of the Structural Division, American
Society of Civil Engineers (ASCE), Vol. 97, No. STl, pp. 463—479,
January, 1971.

Groves, L. J., and Rogers, W. J., "The Design of a Virtual Machine
for Ada," pProceedings of the ACM-SIGPLAN Symposium on the Ada
Programming Language, SIGPLAN Notices, Special Interest Group on
Programming Languages of the Association for Computing Machinery
(SIGPLAN-ACM), Vol. 15, No. 11, pp. 223—234, November, 1980.

GSPC79

HarrJ75a

HarxrJ75b

HarrJ80

HernE74

IBM8la

IBM81b

IPADSO

IverK62

JensK76

JensR79

KeenP81

106

s "Status Report of the Graphic Standards Planning
Committee, Part II: General Methodology amnd the Proposed Core
System Standard (Revised)," Computer Graphics, Special Interest
Group on Computer Graphics of the Association for Computing
Machinery (SIGGRAPH-ACM), Vol. 13, No. 3, August, 1979.

Harris, J. R,, Melin, J. W., Tavis, R. L., and Wright, R. N.,
Technology for the Formulation and Expression of Specificationms,
VYolume I: Final Report, UILU—ENG—75—2029, Civil Engineering
Studies, Structural Research Series, No. 423, Department of Civil
Engineering, University of Illinois at Urbana-Champaign, Urbana,
Illinois, December, 19/5.

Harris, J. R., Melin, J. W., and Albarran, C., Technology for the
Formulation and Expression of Specifications, Volume II: Program
User’s Manual, UILU-ENG—-75-2030, Civil Engineering Studies,
Structural Research Series, No. 424, Department of Civil
Engineering, University of Illinois at Urbana-Champaign, Urbana,
Illinois, December, 1975.

Harris, J. R., Organization of Building Standards: Systematic
Techniques for Scope and Arrangement, Unpublished doctoral thesis,
Department of Civil Engineering, University of Illinois at Urbana-
Champaign, Urbana, Illinois, 1980.

Herness, E. D., and Tocher, J. L., '"Design of Pre- and
Postprocessors," In Structural Mechanics Computer Programs, Surveys,
Assessments, and Availability, Ed. W. Pilkey, K. Saczalski, and
H. Schaeffer, University of Virginia Press, Charlottesville,
Virginia, pp. 887-898, 1974,

s SQ1/Data System General Information, GH24-5012-0,
International Business Machines (IBM), White Plains, N.Y., 198l.

s SQL/Data System Concepts and Facilities, GH24-5013-0,
International Business Machines (IBM), White Plains, N.Y., 1981.

, JIPAD: Integrated Prograws for Aerospace-Vehicle
Design, NASA Conference Publication 2143 (CP—2143), National
Aeronautics and Space Administration (NASA), Washington, D.C., 1980.

Iverson, K. E., A Programming Language, John Wiley and Sons, New
York, 1962.

Jensen, K., and Wirth, N., PASCAL User Manual and Report, Second
Edition, Springer-Verlag, New York, 1976.

Jensen, R. W., and Tonies, C. C., Software Engineering, Prentice-
Hall, Englewood Cliffs, New Jersey, 1979,

Reen, P. G. W., "Information Systems and Organizational Change,"
Communications of the ACM (CACM), Association £for Computing
Machinery (ACM), Vol. 24, No. 1, pp. 24-33, January, 198l.

KernB76

KimW79

K1inR80

LatoJ77

LevyD80

LogceR67

LopeL72a

LopeL72b

LopeL77a

LopeL77b

107

Kernighan, B, W., and Plauger, P. J., Software Tools, Addison
Wesley, Reading, Massachusetts, 1976,

Kim, W., "Relational Database Systems,” Computing Surveys,
Association for Computing Machinery (ACM), Vol. 11, No. 3,
pp. 185211, September, 1979.

Kling, R., "Social Analyses of Computing; Theoretical
Perspectives in Recent Eumpirical Research," Computing Surveys,
Association for Computing Machinery (ACM), Vol. 12, No. 1,
pp. 61-119, January, 1980.

Latombe, J=C., "Artificial Intelligence in Computer-Aided Design,"
In CAD Systems, Proceedings of the IFIP Working Conference on
Computer—-Aided Design Systems, Ed. J. J. Allan, III., North~Holland,
pp. 61-170, 1977.

Levy, D., Mittman, B., and Newborn, M., "3rd World Computer Chess
Championship," Communications of fthe ACM (CACM), Association for

Computing Machinery (ACM), Vol. 23, No. 11, pp. 661—664, November,
1980.

Logcher, R. D., et al., ICES STRUDL-I, The Structural Design
Language, Engineering User’s Manual, R67-56, Civil Eugineering
Systems Laboratory, Department of Civil Engineering, Massachusetts

Institute of Terhnolcgy, Cambridge, Massachusetts, 1967.

Lopez, L. A., "POLO — A Supervisor for Integrated Systems
Development," DProceedings, Colloque International sur les Systémes
Intégrés en Gémie Civil, Principres et Description Gémérale des
Systémeg Intégrés, [International Colloquium on Integrated Systems
in Civil Engineering, Principles and General Description of
Integrated Systems], Editeur G. Deprez, Centre d“Etudes pour la
Promotion des Ordinateurs dans la Construction [Center of Studies
for the Promotion of Computers in Comnstruction (CEPOC)], Université
de Lidge, Lidge, Belgium, Vol. 1, No. J.6, April, 1974.

Lopez, L. A.,, "POLO — Problem Oriented Language Organizer,"
Computers and Structures, Vol. 2, No. 4, pp. 555572, September,
1972,

Lopez, L. A., "FINITE: An Approach to Structural Mechanics
Systems," Intarnationsl Journal for Numerical Methods in
Engineering, Vol. 11, No. 5, pp. 851-866, 1977.

» Report on the Workshop for Software Coordination
within the University Environment, National Science Foundation
Project Report (NSF), Prepared by L. A. Lopez, Available from
National Technical Information Service (NTIS), PB 273686/AS, United
States Department of Commerce, Springfield, Virginia, October, 1977.

LopelL77c

Lopel79a

LopeL79b

Lopel80

Lovel42

MacNR71

McCaJ62

McCaJ78

MeCoC72

MeloR78

108

-, Appendices to the Report on the Workshop for Software
Coordination within the University Environment, National Science
Foundation Project Recport (NSI'), Prepaicd by L. A. Lopez, Available
from National Technical Information Service (NTIS), PP 273687/AS,
United States Department of Commerce, Springfield, Virginia,
October, 1977.

Lopez, L. A., Dodds, R. H., Rehak, D. R., and Urzua, J.,
POLO-FINITE, A Structural Mechanics System, Usex’s Manual, Civil
Engineering Systems Laboratory, University of Illinois at Urbana-
Champaign, Urbana, Illinois, Department of Civil Engineering and the
Academic Computer Center, University of Kansas, Lawrence, Kansas,
1979.

Lopez, L. A., "Software Problems in the University Envirooment,”
Journal of the Technical Councils, American Society of Civil
Engineers (ASCE), Vol. 105, No. TC2, pp. 385399, December, 1979.

Lopez, L. A., Dodds, R. H., Rehsk, D. R., and U:zzua, J.s
POLO-FINITE, A Structural Mechanics System, Example Solutions
Manual, Civil Engineering Systems Laboratory, University of Illinois
at Urbana-Champaign, Urbama, Illinois, Department of Civil
Engineering and the Academic Computer Center, University of Kansas,
Lawrence, Kansas, 1980.

Lovelace, Lady A. A., Notes upon the Memoir "Sketch of the
Analytical Engine Invented by Charles Babbage," By L. F. Menabrea
(Geneva, 1842), Reprinted in Charles Babbage and His Calculating
Engines, Ed. P. Morrison and E. Morrison, pp, 248249, 284. Dover
Publications, New York, 1961.

MacNeal, R., and McCormick, C. W., "The NASTRAN Computer Program
for Structural Analysis," Computers and Structures, Vol. 1, No. 3,
PP. 389412, October, 1971.

McCarthy, J., et al., Lisp 1.5 Programmer’s Manual, MIT Press,
Cambridge, Massachusetts, 1962.

McCarthy, J., "History of LISP," Preprints, ACM-SIGPLAN, History
of Programming Languages Conference, SIGPIAN Notices, Special
Interest Group on Programming Languages of the Association for
Computing Machinery (SIGPLAN-ACM), Vol. 13, No. 8, pp. 217223,
August., 1978.

McCormick, C. W., The NASTRAN User’s Manual, NASA Specialty
Publication 222(01) (SP—222(01)), National Aeronautics and Space
Administration (NASA), Washington, D.C., June, 1972.

Melosh, R, J., Marcal, P. V., and Berke, L., "Structural Analysis
Consultation Usang Artificial Intelligence," In Research in
Computerized Structural Analysis and Synthesis, NASA Conference
Publication 2059 (CP-2059), NMational Aeronautics and Space
Administration (NASA), Washington, D.C., October. 1978.

MichA76

MichJ78

MillcCé6l

MillR74

Mo078

NASA72a

NASA72b

¥aurP60

Newed72

PerlA78

RadiG78

RehaD79

109

Michaels, A. S., Mittman, B., and Carlson, C. R., "A Comparison of
Relational and CODASYL Approaches to Data-Base Management,"
Computing Surveys, Association for Computing Machinery (ACM),
Vol. 8, No. 1, pp. 125—151, March, 1976.

Michener, J. C., and van Dam, A., "A Functional Overview of the
Core System with Glossary,”" Computing Surveys, Association for
Computing Machinery (ACM), Vol. 10, No. 4, pp. 381-387, December,
1978, '

Miller, C. L., COGO — A Computer Programming System for Civil
Engineering Problems, Department of Civil Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts, August, 1961,

Miller, R. E., et al., "Feasibility Study of an Integrated Program
for Aerospace Vehicle Design (IPAD)," Proceedings of the Design
Automation Workshop, Institute of ZElectrical and Electronics
Engineers (IEEE), Vol. 11, pp. 335-346, June, 1974.

Mo, 0., Klein, H. F., Pahle, E., and Harwiss, T., "Finite Element
Programs Based on General Prograsmming Systems," Computers and
Structures, Vol. 8, No. 6, pp. 703-715, June, 1978.

s The NASTRAN Theorctical Manual, Ed. R. H. MacNeal,
NASA Specialty Publication (SP—221(01)), National Aeronautics and
Space Administration (NASA), Washington, D.GC., April, 1972.

s The NASTRAN Programmer’s Manual, NASA Specialty
Publication (sp—223(01)), National Aeronautics and Space
Administration (NASA), Washington, D.C., September, 1972,

Naur, P., et al., "Report on the Algorithmic Language Algol 60,"
Communications of the ACM (CACM), Association for Computing
Machinery (ACM), Vol. 3, No. 5, pp. 299-314, May, 1960.

Newell, A., and Simon, H. A., Human Problem Solving, Prentice-
Hall, Englewood Cliffs, New Jersey, 1972.

Perlis, A. J., "The American Side of the Development of Algol,"
Preprints, ACM-SIGPLAN, History of Programming Languages Conference,
SIGPLAN Notices, Special Interest Group on Programming Languages of
the Association for Computing Machinery (SIGPLAN-ACM), Vol. 13,
No. 8, pp. 3—14, August, 1978,

Radin, G., "The Early History and Characteristics of PL/I,"
Preprints, ACM-SIGPLAN, History of Programming Languages Conference,
SIGPLAN Notices, Special Interest Group on Programming Languages of
the Association for Computing Machinery (SIGPLAN-ACM), Vol. 13,
No. 8, pp. 227-241, August, 1978.

Rehak, D. R., and Lopez, L. A., "A Tool for Translating Problem
Oriented Languages," Journal of the Technical Councils, dmerican
Society of Civil Engineers (ASCE), Vol. 105, No. TCl, pp. 3342,
April, 1979.

RequA80

RoosD60

RossD59

RossD78

SammJ78

SchaH78

SchnVv78

SchrE74

SchrE?7

SchrE78

SchrE79

ShorE76

110

Requicha, A. A. G., "Representations for Rigid Solids: Theory,
Methods, and Systems," Computing Surveys, Association for Computing
Machinery (ACM), Vol. 12, No. 4, pp. 437-464, December, 1980.

Roos, D., ICES System Design, MIT Press, Cambridge, Massachusetts,
1966,

Ross, D. T., APT System Documentation, General Description of the
APT System, MIT Servo Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, Vol. I, June, 1959,

Rosa, D. T., "Origins of the APT Language for Automatically
Programmed Tools," Preprints, ACM-SIGPLAN, History of Programming
Languages Conference, SIGPLAN Notices, Special Interest Group on
Programming Languages of the Association for Computing Machinery
(SIGPLAN-ACM), Vol. 13, No. 8, pp. 61—99, August, 1978.

Sammet, J. E., "The Early History of COBOL," Preprints,
ACM~STIGPLAN, History of Programming Lanpuages Conference, SIGPLAN
Notices, Special Interest Group on Programming Languages of the
Asgociation for Computing Machinery (SIGPLAN-ACM), Vol. 13, No. 8,
pp. 121-161, Auvgust, 1978.

Schaeffer, H. G., "A Review of the International Symposium on
Structural Mechanics Software," Computers and Structures, Vol. 8,
No. 5, PP- 589_598’ Mﬂ,y, 1978.

Schneider, V., "Prediction of Software Effort and Project
Duration — Four Mew Formulas," SIGPLAN Notices, Special Interest
Group on Programming lLanguages of the Association for Computing
Machinery {SIGPLAN-ACM), Vol. 13, No. 6, pp. 4959, June, 1978.

Schrem, E., "Development and Maintenance of Large Finite Element
Systems," In Structural Mechanics Computer Programs, Surveys,
Assessments, and Availability, Ed. W. Pilkey, K. Saczalski, and
H. Schaeffer, TUniversity of Vairginia Press, Charlottesville,
Virginia, pp. 669-685, 1974.

Schrem, E., "From Program Systems to Programming Systems for
Finite ©Element Analysis," In JFormulations and Computational
Algorithms in Finite Element Analysis: U.S.-German Symposium,
Ed. K-J. Bathe, J. T, Oden, and W. Wunderlich, MIT Press, Cambridge,
Massachusetts, pp. 163190, 1977.

Schrem, E., "Functional Software Design and its Graphics
Representation," Computers and Structures, Vol. 8, No. 3/4,
pp. 491-502, May, 1978.

Schrem, E., "Trends and Aspects of the Development of Large Finite
Element Software Systems," Computers and Structures, Vol. 10,
No. 1/2, pp. 419-425, April, 1979.

Shortliffe, E. H., Computer-Based Medical Congultatioms: MYCIN,
American Elsevier, New York, 1976.

SimoH73

TaneA76

Tay1R76

TricD76

TuriA50

UBC76

WaltC77

WaltD78

WilsJ76

WinoT71

WinsP77

WrigR75

111

Simon, H. A., "The Structure of Ill Structured Problems," Second
Edition, Azrtificial Intelligence, Vol. 4, pp. 181--201, 1973.

Tanenbaum, A. S., "A Tutorial on ALGOL 68," Computing Surveys,
Association for Computing Machinery (ACM), Vol. 8, No. 2,

pp. 155-190, June, 1976.

Taylor, R. W., and Frank, R. L., "CODASYL Data-Base Management
Systems," Computing Surveys, Association for Computing Machinery
(acM), Vol. 8, No. 1, pp. 67-103, March, 1976.

Trichritizis, D. C., and Lochovsky, F. H., "Hierarchical Data-Base
Management," Computing Surveys, Association for Computing Machinery
(AcM), Vol. 8, No. 1, pp. 105123, March, 1976.

Turing, A. M., '"Computing Machinery and Intelligence," Mind,
Vol. LIX, ©No. 236, 1950, Reprinted in Computers and Thought,
Ed. E. A. Feigenbaum, and J. Feldman, McGraw-Hill, New York,
pp. 11-38, 1963.

: Uniform Building Code, International Conference of
Building 0fficials, Whittier, Califormnia, 1976.

Waltson, C. E., and Felix, C. P., "A Method of Programming
Measurement and Estimation," IBM Systems Journal, Internatiomal
Business Machines (IBM), Vol. 16, No. 1, pp. 5473, 1977.

Waltz, D. L., "An English Language Question Answering System for a
Large Relational Database," Communications of the ACM (CACM),
Asgociation for Computing Machinery (ACM), Vol. 21, No. 7,
pp. 526—539, July, 1978.

Wilson, J. L., and Lansberry, C. R., '"Interactive Computer
Graphics for Computer Aided Design in Civil Engineering," Computer
Graphics, Special Interest Group on Computer Graphics of the
Associatioa for Computing Machinery (SIGGRAPH-ACM), Vol. 10, No. 2,
pp. 8996, Summer, 1976.

Winograd, T., Procedures as g Representation for Data in a
Computer Program for Understanding Natural Languages, Ph.D. Thesis,
MAC TR—84, Massachusetts Institute of Techmology, Cambridge,
Massachusetts, Reproduced by National Technical Information Service
(NTIS), AD 721-399, United States Department of Commerce,
Springfield, Virginia, February, 1971.

Winston, P. H., Artificial Intelligence, Addison Wesley, Reading,
Massachusetts, 1977,

Wright, R. N., Harris, J. R., Melin, J. W., and Albarramn, C.,
Technology for the Formulation and Expression of Specifications,
Volume III: Technical Reference Manual, UILU-ENG—75-2031, Civil
Engineering Studies, Structural Research Series, No. 425, Department
of Civil Engineering, University of Illinois at Urbana-Champaign,
Urbana, Illinois, December, 1975.

112

APPENRDIX A. FINITE USER’S WISH LIST

The following is a short description of the features which are needed, or
have been requested as muiifications and extensions to FINITE. Familiarity
with the details of the capahilities currently presemt in FINITE will be
useful in understanding these requests [DoddR78, Lopel79a, Lopel80]. 'This
discussion is based on the model of the system presented in section 2.2.3.
There is no significance to the ordering of the items within the list.

Sizes not specified: The first data item required to describe any

substructure is its size, in terms of the number of elements
and nodes in the substructure. Providing these values is
sometimes inconvenient for the user. This data is required by
the system, but the model input processor could determine
values based on the remaining data entered by the user. The
lack of an exact value during data entry would create
difficulties in strict error checking used to guarantee that
all of a substructure’s data has been provided.

Alphanumeric node and element labels: All node and element labels
are currently integer quantities. Users would like the ability
to use descriptive names for these items. The integer
representation could be maintained within the computational
kernel. The model input and output processors would need to
deal with the alphanumeric labels and the tramslation of these
to the internal integer form. Data structures to store the
translation to the internal form also would be needed in the
mathematical model.

Noncontiguous node and element numbers: The element and node

number labels must be contiguous to aid in checking. However,
it is often inconvenient to renumber the entire mesh when
deleting a portion of a substructure. The solution to this
problem (providing an external form, and internal form, and a
translation) is the same &8 the solution for the alphanumeric

node and element label problem described above.

Nonrectangular constraints: Constraints must be entered in a
rectangular coordinate system. This is often inconvenient for
curved structures. The model input processor could be used to
translate the data from a nonrectangular system to the common
internal form, as is currently dome for coordinates. A more
advanced approach would be to provide coordinate systems as a
basic part of the input language. Any type of coordinate
translation would then be performed by the language support
software.

Default element loads: There are no default forms for element
loads. The element load input lists are often long, with only
minor variations between items. The change would require
extensions to the input language definition and the associated
language translation facilities in the model input processor.

Nodal coordinate system: All primary results are computed 1in the
local structural coordinate system. Nodal coordinate systems
would be convenient in many cases; shells are a typical
example. The model input and output processors would be
affected, and an additional model data structure would be
required to support this extension.

Nodal temperature gradieants: Temperature gradients may only be
applied at the elemont level, via element loads. This often
requires large amounts of duplicate element load data when a
gradient field 1is distributed over several elements. Changes
to the model data structures, the model input processor, and
the compuvtational kernel would be required.

Nodal materials: TFor certain types of directional materials, the
ability to specify material data based on mnodes is more
convenient than associating the data with the elements.
Changes to the data structures, the model input processor, and
computational kernel would be required.

Improved lists: The ability of describe data through lists such as
"1-35 BY 3" is useful, but the capability could be extended,
“"ALL BUT 10-17 for example. Such a change would be limited to

the modification of the support language translation routine.

113

114

Units: All input and output quantities must be givemn in a fixed
get of wunits, and the system assumes the user is consistent.
This is bothersome and error prone. The change would permit
units to be associated with any data item. Such a change would
require that parameters have units, and that all of the model
input and output processors handle units. This change is
potentially complex due to the nature of degree of freedom
assignments. Any element may use a certain degree of freedom
to represent a quantity with certain units. The system needs
to be able to combine this element with any other element which
many use the same degree of freedom to represent a quantity
with different units.

Parameter input: Parametric models are often useful in research.
Parameters could be provided by extensions to the language
support software. This software would provide the capabilities
needed to translate the parametric model input into a
conventional problem description.

Expression input: Simple quantities are often computed from
complex expressions before being input. Direct expression
input is more useful and less error prome. Expressions could
be provided at the language 1level, by the language support
software. The input language definition would be modified so
that an expression would be acceptable wherever a number is now
required.

Natural language: Natural language input is the most £lexible
input form. Language processing is independent of any
vnderlying support system. Thus, the change could be isolated
to the language support software. However, natural language
input translation is very complex,

Renumbering: Requiring thec user to properly number the mesh 1s
often a complex and error prone user task, Mesh renumbering
algorithms are useful in providing economical solutions by
reducing the bandwidth of the equations. Implementing
renumbering algorithms requires support data structure to
provide the translation between the user numbering and the
internal numbering, the renumbering process, and a numbering

translation process in the model output processor.

115

Top down structural models: Structural models are defined from the
bottom up; the lowest level substructures must be defined
first, and higher level structures are defined based on these
lower level substructures. Top down models, zecursively
subdividing the structure, are sometimes more natural. This
change is compatible with the current modeling process. An
alternative model input processor would be required.

Material models at strain points: Each nonlinear element has one
common material model for all strain points. This is
restrictive for some types of problems., A chahge to permit
different material models at each strain point would be basic
and affect much of the system. Data structures for both the
computational and mathematical models would be changed, and all
processes which deal with stresses, strains, or materials would
be affected.

Material models for all elements: Material models are currently
used only for nonlinear elements. Linear elements take
material data from element parameters. To make the process of
using material models consistent would also be a basic change,
similar to the one described above.

Nonvector degrees of freedom: The system supports ten groups of
degrees of freedom at each node. Each group consists of three
components which transform as a wvector quantity. Certain
derivative quantities, such as twist, transform as tensors, and
elements using such degrees of freedom do not function properly
when used out-of=-plane. This change would be basic and impact
the library and the computational kermel.

Multiple sets of constraints: Any change to a constraint
invalidates the entire constraint set and all computed results.
It is often valuable to combine results from different
constraint conditions, The ability to maintain multiple
constraints sets and solutions for each rsfet would be better
than the current "FOURIER" approach. The effects of this
change would be wide spread, affecting both the computacional

model and computational kermel.

Linear analysis as a subset of nonlinear: Internally, linear
analysis and nonlinear amnalysis are handled as separate cases,
although from the user’s viewpoint there are mno major
differences between such analyses. For the system to treat
linear analysis as a subset of nonlinear analysis would require
changes to the computational kernel.

Global versus local stiffness: All stiffnesces are computed in the
global coordinate system. For certain types of elements and
problems this is not convenient. This change would require a
modification of the computational kernel.

Dynamics: Dynamics is a major extension, and it impacts all
aspects of the system.

Tables used with any element: The use of tables to provide element
parameters is restrictive, in that the table must be compatible
with the element. This compatibility is the respomsibility of
the table and element implementors. A dynamic linkage
mechanism is needed to allow any table to be used with any
element. Additiomally, the wuse of wunits has possible side
effects, since the default table units may not be the same’ as
the current problem units. This change would affect only the
library and the model input processors.

Multi-valued parameters: All element pavameters are scalars. For
materials the parameters may be multi-valued. Elements are
required to use many single parameters for iiems such as nodal
thickness, which requires a vector with a value for each nede.
Providing multi-valued parameters would be a minor language
change and would affect the library and the model input
Processor.

Bounds on properties: Element parameters must be bounds—checked by
the element modules (i.e., E > 0.0, 0.0 £ NU £ 0.5, etc.).
Associating bounds with the parameters in the 1library would
permit the system to uniformly enforce bounds-checking. This
change would require modifications to the library and the model
input processor.

Number of element parsmeters: The maximum number of parameters and
results for each element is fixed. The current value of this

limit has been found to be restrictive. Changes to eliminate

116

http://ii.es

117

this restriction would be required in the library and the
computational model creation and processing components.

Change element parameters at run—time: Once defined, any change to
an element parasmeter causes the system to invalidate all
results for the substructure in which it appears, and for all
higher level substructures., For some cases, this is not
appropriate. For example, it is not possible to change a
parameter which would affect output computation without
vequiring all data to be recomputed. This capability could be
provided by designating the action which is to occur when a
parameter is changed. The change would affect the library and
the model input processor.

Element parameters grouped by type: Element parameters are
untyped. Providing types (i.e., as control, geometric,
display, etc.) may be more convenient for processing and
modifications of parameters as described above. It would
require changes to the library, the model input processor, and
all element modules,

Rleuent geometry: The complete geometry of an element is scattered
throughout the coordinates and parameters. It is not known
until stiffness generation time, and is often recomputed by
every element module. A single element process to create and
store the element geometry may be appropriate. Placing this
process in the model checking process would also provide better
model diagnostics. This change would require modifications to
the library and model data structures, as well as to the model
input processor, the computational kernel, and the element
modules. This would be a new feature with wide spread effects
on the entire system.

System control by elements: The various element modules are
attomatically and unconditionally invoked. In some cases (such
as stress computations for nonlinear elements) the element
module’s function may be performed directly by the system
without the need of invoking the element module. The element
could provide information which would direct the system’s
operations., This would require changes to the library and the

computational kernel.

Improved data generators: There are a number of problems with the

data generators; polar generation does not function properly
at all times, and triangular elements can not be generated.

Improvements would be isolated to the gemerators.

Ability to gensrate any type of data: Generation of incidences and

User

Data

coordinates may eliminate a large portion of the input data.
Constraints and loads often exhibit patterns which could be
generated in a similar manner. Extending the generator to
compute spatial variations of any component would require an
enhanced generator, and its incorporation into the model input
processor.

data generators: For complex problems, such as shell
intersections, a specific problem oriented user data generator
would often be useful. There is a need to interface such a
generator to the system without the generator producing POL
input to be processed as normal input, This would require the
ability to support user written modeling processors in the
model iunput processor. Such a generator would consist of data
generation routines and a description of the POL input language
used by the generato.. The generator input would be translated
by the system, and the generator would be invoked to directly
build the mathematical model.

extraction: Data extraction is the opposite of user data
generators. It is used to provide specific data for special
post-processors. It would require the modification of the
model output processor to support user written output
processors. The data extractor would consist of a set of
routines which would access the model results and produce
output, and a POL description of the language statements used
to drive the data extractor. The system would provide language

translation and invoke the data extractor.

Solution status: The system does not record the status (i.e.,

triangulated, solved, etc.) of a solution for any problem. It
must be externally recorded by the wuser. The change would
require the system maintain the status information, and permit
user inquiry. Modifications of the computational database and

computational kernel are required to support this change.

118

Solution log: A 1log would record all steps in the solution
process. This would permit inquiry to determine the actions
taken to reach the current problem state. Logging would
require the addition of the log data structure and a logger in
the computational kernel.

Improved error recovery: The system was designed for the batch
enviromment. Errors usually cause eventual abnormal system
termination. The error action should depend on the operating
environment, permitting the user to regain control if possible
and t.oke corrective action. This change would influence all
processors.

No fatal errors: Many errors terminate the system in a manner such
that problem restart is not possible, No fatal errors should
exist, unless caused by a fault in the underiying system. This
change would influence all processors.

Model output: There is currently no mechanism to output the
current structural model. Capabilities are needed to output
any portion of the model. Such a process would require major
additions to the model output processor, and possibly the
addition of element output modules. This would be a valuable
user feature.

Computational results output: Only the unassembled stiffness
matrix may be output from the computational model. Maintenance
and element testing would be impreved by the ability to output
any component of the computational model. This would require
the creation of the computational results output processor,

Nonnumeric output quantities: All element stress and strain output
quantities are restricted to be real numbers. State quantities
(i.e., element loading, element unloading, or strain point
yielded) are best expressed as nonnumeric values. This change
would require modifications to the library and the model output
ProCessor.

Material output: Material models have no formal mechanism for
providing output. Currently they may augment element output,
but this requires explicit element and material compatibility.
Formal material model output is needed, and would require
modifications to the library, the computational kernel, and

model output processor,

119

Combined compute and output requests: The compute and output
requests must be given separately for each step, if output is
to be obtained as computed. This often leads to long sequences
of requests, especially for nonlinear problems. More complex
request forms would be useful and eliminate user input.

Stress averaging: Stress averaging is a complex problem when
different types of elements (with different types of stress
resultants) are combined. Stress averaging would be performed
by the moder cutput processor, and the library must contain
data describing the types of stress quantities computed by each
element.

Stress interpolation: Stress interpolations are needed for display
and averaging. This would be performed by the model output
processor, and the library must contain data describing the
interpolation functions,

Maximum and mipimum stresses: Stress limits could be computed by
the model output processor.

Subsets and ordered results: Only a lir ‘ted capability exists for
providing a subset of the results computed by an element,
Complete control over the number and order of all output
quantities 18 more useful. This change would affect the model
output processor and the element output modules.

Model graphics: An integrated model display capability is lacking.
This facility would permit any portion of the model to be
displayed. This would be a major addition. The additions
include 1library descriptions of how to process an element,
element display modules, and the display components of the
model output processor.

Result graphics: Integrated results display 1s also lacking and
would be a major addition. This provides the capability of
displaying any computed results. It would require similar
extensions to the library and the model output processor as
described above.

Graphics transformations: Arbitrary graphics viewing capabilities
(i.e., clipping, perspective, rotations, hidden surface
elimination, etc.) are essential to provide useful displays.
These features would be provided by the model output processor

and the graphics support system.

120

Function plotting: In addition to display of the results in tLerms
of the model, direct plotting of graphs, such as load versus
displacement are useful. This feature would require a functiom
plotting capability in the model output processor amnd in the
graphics support system.

Digitizer input: Translation of structural models from drawings
may be best accomplished through digitizer dinput. This

extension would be isolated to the model input processor.

121

122

APPENRDIX B. DATABASE MANAGEMERT

A database is a collection of data items, used in an organization’s data
processing applications, This collection is stored on some type of secondary
storage medium, typically disk. The database exiats independently of all the
processing applications which use it., The contents of the database are
created, used, and maintained by the various applications. As such, the
database integrates the applications. The database management system is the
collection of software which lies at the interface between the physical device
access procedures and the applications. It supports all of the operations on

the data and all accesses to the database.

B.l The Evolution of Database Management Systems

Database management has resulted from attempts by commercial computer
users to improve their data processing capabilities., Origanally, programs
input data, processed it and created files of information (usually on tape) to
be used in subgequent processing. The file creation program "decided" what
data would be kept, and how it would be stored. The £file creation program
was, in effect, the "owner" of the data, and was responsible for making all
decisions regarding data storage and retention. The data produced by one
program was goon needed by other applications. The needed data was quite
often difficult tn obtain (wmissing data items, wrong format, format unknown,
data order made it difficult to process, etc.). This led to attempts to
integrate the data from all the applications. Databases and database
management systems (DBMS) are now used to store and maintain this integrated,
centralized form of the data.

There are a number of advantages to the centralized approach:
(1) reducing redundancy: duplicate or similar data stored in different files
for the use of different applications can be combined and stored only once;
(2) improved availability: data can be shared and made available to any
application independent of other applications; (3) reducing incousistency:
redundant data can be different, once the data is combined these
inconsistencies can mnot occur; (4) enforcing standards: data can Dbe
represented in a standardized form which simplifies use and maintenance for

all applications; (5) enforcing data security: authorization and data access

123

come from a single point, and this part of the system enforces all access
procedures; and (6) balancing conflicting requirements: each data user hao
his own best form for the data, and a centralized system permits a form which
is most appropriate for all users to be selected. The problems with the
database approach are related to the same aspects which are its advantages.
It is not a simple task to creste such a system, to insure security and
integrity, and to determine what forms are most appropriate for all data
users.

Through many years of development, the file based systems led to database
systems [FryJ76]. The various aysﬁems which evolved all have two basic
components: (1) a data model used to define the organization and structure of
the data items in the database, and {2) a data language used by the
application to access the data. There are a variety of forms which are
possible for these components. However, the data language is highly dependent
upon the type of data model. The three data models which have evolved are:
(1) hierarchical [TricD76}, (2) network [TaylR76], and (3) relational
[ChamD76, MichA76, KimW79].

Hierarchical: Tae hierarchical model is based on the organization

of data inteo a hierarchical or tree structured form. This data
model is often chosen because tree structures are natural in
many applications and organizations. Data frequently occurs in
a 1:N relationship. There are many (N) occurances of a data
item which are all subordinate to a single item. A typical
example might be a company which is divided into many
departments with a group of employees associated with each
department. The employees are below the departments in the
hierarchy, and sgimilarly, the departments are below the
company. An example of a hierarchical model is shown in
figure B.l.a. To access the data, it is neccssary to know the
physical organization of the database. The data 1s
"organizationally addressed." Traversal of the tree structures
is required to obtain any data item. The hierarchical
organization is useful and simple, especially if the
applications are naturally hierarchical. However, if Lhe data
structure or the access paths do not conform to the
hierarchical form, severe problems can result due to the

complex processes needed to access the data.

2N\

(a) Hierarchical Model

(b) Network lodel /

-

(c) Relational Model

Figure B.l.

Data Models

124

125

Network: The network model is also known as CODASYL or DBTG (Data
Base Task Group). The 1:N relationship used in the
hierarchical model can not be used to represemt all forms of
data. The network approach relaxes the strict tree form, and
allows data items to be interrelated as are the nodes in a
nectwork. Data relationships are N:M (M items are subordinate
to N items). An example of a network model is shown in
figure B.l.b. Again, the data is accessed by traversing the
various components of the data structure.

Relational: The relatioral model is based on the mathematical
theory of relations. The data is stored in sets of relatiomns,
typically represented as tables of tuples. A typical relation
is shown in figure B.l.c. The major difference with the other
models is that all data in the relational model exists in a
single form, and all of the data accesses are made by logical
content rather than by the physical data organization. Im the
relational model, the data is "content addressed." Additional

information on the relational model is presented below.

B.2 Database Management Systems Structure
A database management system consists of a number of different
components, and provides a number of distinct features. The major components
of a typical system are:
Data Definition: The data definition facilities are used to
describe the data items and data structures used in any
database. There typically are two components, The first is a
data definition language (DDL). This language is used to
describe the logical organization of the database: its
components, their organization, and their relationships. This
description is sometimes demoted the "schema,” There exists
one global schema for the entire database. Individual users
may need only portions of the database, and these subsets of
the database are described in a similar manner and are denoted
"subschema" or "views." The data definition does mnot specify
how the data is physically stored (the size of fields, record
formats, etc.). A data mapping language (DML), the second
component of the data definition facilities, 18 used to

describe this physical data representatiou.

126

Access: The access facilities are used to enter, query, update,
and manipulate the data contained in the database. There are
often two sets of access facilities. One 1is provided for
programmers to use in application programs. The other is for
end-users, to support simple generalized queries, without the
need Lo develop special application programs.

File Structure: The file structures are used to store the contents
of the database.

Data Dictionary: This is a component of the database which is used
to maintain the descriptions of the items in the database.
Thus, the database is self-documenting.

Integrity Control: Various constraints on items in the database
must be maintained (i.e., SALARY > 0). The integrity software
is used to verify all data manipulation requests to insure they
do not violate any constraints.

Concurrency Control: Databases a2re used 1n a multi-user
enviromment, and this component of the database management
system insures that all data updates are synchronized and that
deadlocks do mot occur.

Access Control: This feature provides the authorization of a
user’s privileges for data query and modification,

Recovery: Failures, due to software or hardware, can invalidate
portions of the database. Recovery features are wused to
maintain sufficient information so that the database can
automatically be rebuilt after a failure.

Report Generator: This software is used to produce generalized,
tabular output from the database, without the need to program

special applications.

B.3 The Relational Approach
A relation is defined as [DateC75]:
Given sets Dy, D, ..., D, (not necessarily distinct), R is a
relation on these =n sets if it is a set of ordered n-tuples
< dl, dz, veny dn > such that dl belongs to Dl’ d2 belongs to
Dgs ooy dyy belongs to D,. Sets Dl’ Dz, «esy D, are called the
domains of R. The value n 18 the degree of R.

127

The tabular representation of relations is the most common form utilized., It
has the following properties:

(1) no two rows (tuples) are identical;

(2) the ordering of the rows (tuples) is insignificant; and

(3) the ordering of the columus is significant unless the columns

are referred to by their domain name, rather than by position.

The rules stated above are all that is known about data organization in
the relational model. Data accesses are made by specifying which values of
which domains of a given relation are desired. From the base relation, a8 new
relation is formed which contains only the requested data. The entire set of
data is then returned to the application as a set of tuples, or the tuples are
returned individually. The database management system is responsible for
determining how the data is actually stored (its physical organizatiom).

The terminology used in the relational model can be compared to that of
the more conventional file structures. A relation corresponds to a file. A
tuple corresponds to one record in a file (all records have the same format).
A domain is equivalent to a given field within the records. A set corresponds
to all possible values of a field (domain).

As an example of a relation and its use, consider the structural steel
properties from the AISC manual [AISC70]. A portion of a relation
W_SHAPES_PROPERTIES might be¢ as shown below. In this example the domains are
the deeignation of the shape, its weight, area, principal moment of inertia

(IXX), etc.

W_SHAPES_PROPERTIES

DES.IGNATION | WEIGHT | AREA IXX Iyy

W14x136 136 40.0 | 1590 568
Wl4x127 127 37.3 | 1480 528
Wl4x119 119 35.0 | 1370 492
Wlixlll 111 32.7 | 1270 455
W14x103 103 30.3) 1170 420
W14x95 95 27.9 1 1060 384
W1l4x87 87 25.6 967 350

128

A typical query on this relation may take the following form (uyntax bagsed on
Syatem R [AstrM76]). The query will find the WEIGHT and DESIGNATIOM of all
members with IXX greater than 1000 and AREA greater tham 35,

SELECT WEIGHT, DESIGNATION
FROM W_SHAPES_PROPERTIES
WHERE IXX > 1000
AND AREA > 35

The result would be a relation (unpamed) with two domains (weight and
designation) and two tuples (those wuica satisfy the conditions). The

resulting relation is shown below:

WEIGHT | DESIGNATION

136 W14x136
127 Wl4x127

As can be seen from the above example, the relational approach is
conceptually quite simple. A single common form is used for all data items,

and the physical data organization is mever utilized.

129

APPERDIX C. ARTIFLCIAL INTELLiIGENCE

"Can machines think?" The question was posed in 1950 by Alan Turing
[TuriAS50], but the controversy over the potenmtial of machine intelligence has
existed for 150 years. Lady Ada lovelace (Lord Byron’s daughter), the
"programmer" of Charles Babbage’s Analytical Engine wrote, "The Analytical
Engine has no pretensions to origimate anything. It can do whatever we know
how to order it to perform" (her italics) [LoveL42]. The study of this
intriguing problem has evolved into the discipline of artificial intelligence
(AI). A simplistic definition of AL is: creating a nonhuman system capable
of intelligent thought. The entire human thought process (cognition,
knowledge representation, learning, reasoning, perception and communication)
is so complex and ill-defined that the characterization of what constitutes an
intelligent human process is quite impossible. As a result, no attempt will
be made to give a formal definition of AL,

Artificial intelligence deals with the computer implementation of those
tasks which require (or are currently limited to) human problem solvers. Some
typical problem domzcins which are comsidered to typify human intelligent
processes (and are subjecte of AI research) include: language translation,
game playing (bridge, poker; chess), theorem proving, symbolic manipulation,
natural language understanding and discourse, speech understanding, and expert
problem solving. Of course, once a machine is able to sfolve any of these
problems with the efficiency and skill of a human, there is the fevling that

the problem does not require real intelligence.

C.l Artificial Intelligence Concepts and Research

Artificial intelligence 15 a new field. No formal methodology exists for
converting an intelligent problem solving task into a program. BRather the
field consiets of the status of the solution to a number of problem domains,

and a number of concepts upon which the solutioms are based.

C.l.] Comncepts
A common set of basic concepts and ideas are present in the programs

which implement solutions to the intelligent problem solving tasks. These

basic concepts are search, control, and representation,

130

Search: This is the most basic tool used in all AI systems.
Solutions to the types of problems for which AI is used are
nondeterministic (for a deterministic problem an explicit
golution could be developed). Search provides a systemalic
method of exploring (searching) a variety of alternatives in a
solution space.

Control: An AI system often consists of a number of individual
processes, each with a limited behavior. Control determines
how the various procedures are selected, and how they interact
with the information in the problem space. Control and search
are interrelated. Control selects the ©problem solving
mechanism; search orders the evaluation and invocation of the
control processes while traversing the solution space.

Representation: Kunowledge and data must be translated into some
internal representation to be used in proceseing and problem
solving. Additionally, 211 of the concepts and processes used
to solve the problem must be converted into some symbolic form
which can be processed by the machine.

A variety of control, search, and representation techniques exist., Artificial
intelligence research involves finding the appropriate combinations of these
basic concepts which yield effective problem solvers for particular prcblem

solvi.g domains.

Csl.2 Problem Solving Domains
No complete solutions to any of the wvarious problem solving domains
exists. However, considerable progress bhas been made, and in a variety of
areas the computer shows respectable behavior [WinsP77].
Chess: Due to the complexity of the problem, chess is the subject
of much work. Solutioms typically involve search with
heuristics to reduce the search space. Recent systems rely on
special computer hardware to improve performance [LevyD8O].
Game playing quality improves with the depth of the search, but
the problem solving time required grows exponentially with
search depth. It does not appear that computers and humans
play chess in the same manner. Humans appear to use abstract
pattern recognition, viewing the board as a whole, while the

machine treats each piece individually. The best machines can

131

now approach the level of play of masters. They have defeated
magters in individual games, but never in a complete
tournament.

Natural Language Processing: The best example of natural language
understanding and discourse is the work of Winograd [WinoT71].
He presents a detailed example of discourse with his robot
(called SHRDLU) conversing about a specific domain — the
blocks world., The system shows the complexity of dealing with
guch ill-defined problema as language. Additionally, it
introduces a number of concepts (such as the procedural
representation of knowledge), and provides the basis for later
work in many areas.

Symbolic Mamipulation: Part of Project MAC was the development of
the MATHLIB system. Part of MATHLIB is MACSYMA (MAC Symbolic
Manipulation System) [BogeR75]. One of the most 1interesting
componentes of MACSYMA is its symbolic integration capabil:ty,
which is regarded as superior to all human problems solvers for
this task.

Medical Diagnoses: MYCIN is an '"expert system" wused to help
physicians diagnose and treat bacterial infections [ShorE76].
It is based on rules provided by experts, and has a special
subsystem which allows modifications of the expert knowledge.
MYCIN operates in che domain of wuncertainty. All the data
presented to the program may have a margin of error, and all of
the knowiedge rules are based on operations on uncertain data.
The system shows good performarce, approaching the level of a
human specialist.

Mass Spectrogram Analysis: DENDRAL is one of the first true expert
systems [BuchB69]. It is used to analyze organic chemistry
mags spectrograms. Given the spectrogram and the chemical
formula, the system will deduce the structural arrangement.
DENDRAL is capable of operating at the level of an expert
graduate student.

Speech Understanding: The most successful system to date has been
HARPY [Ermal80]. 1In a specific task domain, 1t can understand
a vocabulary of 1000 words, with an error rate of 5%, in real-
time. HARPY provided the basis for Hearsay-I1I, an advanced

132

knowledge based system for speech understanding. The problem

solving model used in Hearsay=-II is applicable to other problem

domains.

C.2 Production Systems

The production system [NeweA72] represents one of the techmiques used in
Al problem solving, and is the basis for the types of expert systems discussed
in the text. Production systems are deductive problem solvers. Such & system
consists of four basic items: (1) the description of an initial problem state
which contsins a number of entities and facts about the problem, (2) a goal
state, (3) a set of productions, and (4) a controller. Each production 1s a
rule, .onsisting of a predicate and an action. The predicate states: if some
condition about an entity is known to be a fact, then ithe corresponding action
is to be performed which will modify the problem state. The controller is
responsible for determining which productions are to be applied, and the ordez
of application of the productions.

One possible operational procedure is as follows. The controller loops,
selecting and applying productions wuntil no productions are applicable, or
until the goal state has been reached. Production selection strategies
include: (1) apply the first production applicable, (2) find all productions
applicable, and select one based on a predefined priority, or (3) find all
applicable productions, and apply the mest recently used. If the goal state
is reached, the system has deduced the goal by transforming the knowledge, and
adding new knowledge £from the operation of the productions. If the system
runs out of productions, i1t has deduced all possible knowledge, and the goal
is unreachable. Either the goal is 1ncompatible with the knowledge, or
ingufficient productions exist. The process of working from known-to-new
facts is called forward chaining.

The alternative of backward chaining is somecimes more appropriate. 1In
sucL a system, the goal is hypothesized to be true. Productions which produce
the goal are found, and the new goal becomes all of the Lknowledge needed to
make the predicates of these productions true. The process is applied
recursively until no other productions are found. If the unresolved goals aze
consistent with the knowledge in current problem state, the hypothesis is
true. Otherwise the hypothesis fails; either it is incorrect, or

insufficient productions exist.

133

In the recursive process, a number of search strategies are possible.
The two simplest are: (1) depth first — gelect one alternative production,
generate one new goal, and move forward. When blocked, move back and try
another goal at the last decision point. (2) breadth first — generate the
goals for all productions at each level and move forward in parallel, onme
level at a time. Again, when blocked, backtrack. Both prczedures have
advantages and drawbacks, based on the nature of the search space. Other
procedures, such as best first, hill climbing, or branch and bound, all
attempt to minimize the total work done in searching, but no procedure is
optimal in all cases. The concept of backup is one of the the most important
components of controlling any search. Backup permits the system to recover
from a failure state, and to examine other alternatives.

Production systems may operate as control systems. They can contizually
monitor the problem state and perform actions based on state changes, to
control some object. Execution continues until a production explicitly
terminates the system. Similarly, systems may be connected to an external
information source from which they may request information when knowledge is
lacking or can not be derived.

The following is an example of a simple production system for a
thermostat [NeweA72]. Control starts with the first line of the list of
productions and continues until a '"true" predicate is found. Then the
corresponding action 1is performed and execution resumes with the first

product ion.

THERMOSTAT
TEMPERATURE > 70° AND TEMPERATURE < 72° i
STOP.
TEMPERATURE < 32° o

CALL-REPAIR-MAN; TURN-ON [ELECTRIC-HEATER].

TEMPERATURE < 70° AND FURNANCE-STATE = OFF ==
TURN-ON [FURNANCE] .

TEMPERATURE > 72° AND FURNANCE-STATL = ON —
TURN-OFF [FURNANCE] .

Production systems a.e valuable hecause the problem solving knowledge 1is

modular, It is possible to change or augment the knowledge in the

134

productions, and thereby change the behavior of iLhe problem solver, since the
knowledge is simply data to the conrtroller. Since the controller is knowledge
independent, the interactions of the wvarious productions mneed not be
specified. This eliminates the combinatorial increase in the number of
interaction of items, and it also allows the controller to generate all
possible interactions, some of which may have been overlooked if they were
explicitly programmed.

All of this flexibility does lead to a major drawback. Such systems are
known &s '"'weak" problem solvers. They operate in a blind fashion. They may
overlook obvious solution paths and produce circuitous ones, or they may
require much knowledge and do much problem solving which is not pertinent to
obtaining the goal. As the nwmber of productions increases, the resulting

interaccions may not be readily predicted, and control is effectively lost.

C.3 Knowledge Based Systems

Search is the basis of many of the problem solving methods; formulate a
set of alternative solutions and search that solution space. Increasing
problem complexity leads to larger search spaces. An effective problem solver
must search efficiently. To do so, it must determine the solution by
examining as small a portion of the solution space as feasible. A weak solver
has no guidelines to assist in searching. Knowledge helps: knowledge about
the problem domain, or knowledge about effective problem solving strategies in
the problem domain. This knowledge is the expertise of problem solving.
Expert or knowledge based systems have been developed to ngse such information
in providing effective problem solvers. Such systems are known as '“strong"
solvers. MYCIN, DENDRAL, and Hearsay-Il are all examples of knowladge based
systems,

Knowledgn may be used ip a number of ways. One method is to use 'meta
rules" [DaviR/7]. Meta rules are used to describe which rules are appropriate
in a given situation. Thus, the search becomes a two level process. At the
lowest level a solution is found. At the higher level a2 similar problem
solving atrategy is used to determine the process for the selection of the
actual rules used to solve the real problem. Of course, such a system may be
extended to many levels; meta meta rules describe which wmeta rules are
applicable and determine how to select the meta rules used to select the
problem solving strategy, etc. The ability of the system to direct the
problem solving strategy is one difference between the weak, general solvers

135

and the knowledge based systems. Thus, knowledge serves a key role in
selecting the knowledge sources (rules).

Another use of knowledge is in the description of the problem domain and
the problems solving rules., Knowledge based Bystems are types of production
systems., Weak production systems are based on simple axiomatic rules. They
consist of a large number of simple rules, and problem solving involves
deduction through simple transformations. The largs number of rules and lack
of direction contribute to ineffective solvers. In the knowledge based
systems, the rules are more complex. 1n MYCIN, for example, rules consist of
large predicates each with Beveral premises each involving a number of
parameters. Actions may affect multiple parasmeters, and a parameter
description may require several lines of definition., In Hrnarsay-II, rules are
denoted knowledge sour~es, and these knowledge sourcen are encoded as
procedures. Such knowledge ranges frcm a hundred to several thousand lines of
algorithmic language code. Encoding problem domain knowledge in higher level
units provides more efficient solvers, since the number of rules and the
number of interactions are reduced. This reduces the search space.

Knowledge also helps to control uncertainty. Complex problems often do
not have an exact solution, or the data present is incomplete or uncertain.
Knowledge of the problem domain, combined with complex rules based on
knowledge uncertainty allows the knowledge based systems to operate in the
domain of inexact problem solving.)

The following is an example c¢f an expert rule taken from MYCIN [ShorE76].

RULE200

1F: 1) THE SITE OF THE CULTURE IS BLOOD, AND
IF: 2) THE STRAIN OF THE ORGANISM IS GRAMNEG, AND
IF: 3) THE MORPHOLOGY OF THE ORBANISM IS ROD, AND
IF: 4) THE AEROBICITY OF THE ORGANISM IS ANAEROBIC, AND
IF: 5) THE PORTAL OF ENTRY OF THE ORGANISM IS GI
THEN: THERE IS STRONGLY SUGBESTIVE EVIDENCE (.9) THAT THE
IDENTITY OF THE ORGANISM IS BACTEROIDEZS

The rule shown above deals with a number of parameters such as SITE, STRAIN,
AEROBICITY, etc, The description of a simple MYCIN parameter is given below
[shorE76].

http://soarr.es

136

YES-NO PARAMETER

FEBRII.E: <FEBRILE is an attxibute of a patient and
therefore a member of the list PROP-PT>
EXPECT: (YN)
LODKAHEAD: (RULE149 RULE109 RULE045)
PROMPT: (Is * febrile?)
" TRANS: (* IS FEBRILE)

Fxpert systems use knowledge to assist in problem solving. Rather thau
attempting to be general systems capable of solving any type of problem, they
use the same basic AL concepts to attack specific problems which rcoquire
knowledge to represent complex problem solving strategies., The systems do
retain the advantage of the original production s8ystems by maintaining
knowledge independently of the problem solver. The knowledge based systems
present a problem solving paradigm which may be applied to otber problem
domains by changing the knowledge sources.

Problems still exist. Complex knowledge sources perform complex tasks
with limited interaction with the rest of the system, due to the reduced
number of components which can interact. The result is a limit to the
interaction of the knowledge, and a resulting limit on system performance,
siace potentially useful interactions do not occur. Also, as the awount of
knowledge increases, the problem of determining the appropriate knowledge
becomes more important and more costly. Once acceptable processes exist,
algorithmic encoding can improve efficiency and effectiveness. Despite their
drawbacks, knowledge based systems appear to be the best technique currently

available for performing complex ill-structured problem solving tasks.

137

GLOSSARY

There are a veriety of terms and phrases used throughout the text with
which the reader may not be familiar. The Ffollowing contains a short
definition of these terms. For the readers convenience, the terms are grouped

by subject.

l. General
The following are general computer science terms which are used

throughout the text.

Applications: Computer software which is applied to, or used for,
some particular task.

Artificial Intelligence: A discipline of computer science dealing
with the development of computer based systems for intelligent
problem solving behavior (see appendix C).

Back-End Database Management Machine: A dedicated computer
pexforming all database management functions. A back~end
database machine is logically located between the main
processor (which requests all database processing) and the
secondary storage system.

Configuring: The process of selecting the components, and the
arrangement of these components into a system.

Data Abstraction: The process of defining new data types (abstract
types) based on a set of existing data types.

Database: A logical collection of data maintained in a single
organizational unit on some secondary storage devices (see
appendix B). '

quabase Administrator: The individual who is responsible for
supervising a database management system.

Database Manager: A database management system. The run-time data
handling component of a database management system (see
appendix B).

Database Management: The process of managing data through the use

of a database and database management system (see appendix B).

Database Management System: The set of computer software used to
control and support a database (see appendix B).

Data Model: The type of basic logical organizational structure of
items in a database,

Data Types: The generic data quantities which have a particular
representation and behavior (e.g., REAL and DOUBLE PRECISION in
FORTRAN are both floating point types).

Expext Systems: A type of ariificial intelligence system which
uses expert knowledge to control and direct problem solving in
a knowledge based system (see appendix C.3).

Hierarchical Model: A data model used in database management
systeme which is based on a hierarchical data organization (see
appendix B.1).

Information Flow: The process through which data and information
moves between the various individuals and processes that
create, use, and manipulate the information.

Kernel: The basic core of software and operational capabilities in
a system.

Knowledge Based System: Any type of artificial intelligence system
which uses domain specific knowledge to control and direct
problem solving behavior (see appendix C.3).

Knowledge Source: A single logical unit of expert knowledge used
in a knowledge based system (see appendix C.3).

Language Extensibility: Computer language facilities which allow
the language definition to be extended (see section 4 below).

Network Model:, A data model used in database management systems
which is based on a network data organization.

Operators: The basic primitive functions and operations
implemented directly by the hardware of a computer system
(i.e., add, multiply, load, store, read, write, etc.).

Natural Language: The normal (unrestricted) form of spoken and
written language.

Packages: A complete set of computer code and associated data
structures (organized into a single logical unit) design to
perform some particular function.

Production: A premise-action rule of a production system (see

appendix C.2).

138

Production System: A type of artificial intelligence system based
on representing problem 8olving behavior in the form of
productions (see appendix C.2).

Problem Oriented Language: POL. An artificial computer 1language
gsubset of natural language (with restricted syntax and
vocabulary) used for some particular problem area.

Relational Model: A data model used in database management systems
which is based on a relation form of data organization (see
appendix B.,1 and B.3).

Schema: The definition of the logical structure and content of a
database (see appendix C.2).

Software Engineering: The process of "engineering" a piece of
software. A discipline of computer science dealing with the
application of engimeering principles to the development of
software.

Software Tools: General purpose utility progirams used to assist in
developing software. Utility components of a complete system.

Strong Solver: Any type of artificial intelligencc system which
uses domain specific knowiedge in problem solving (see
appendix C.2).

Token Scammer: A program which converts (parses) a stream of input
characters into a set of basic symbols (i.e., numbers, names,
punctuation, etc.).

Tuning: The process of adjusting software to improve 1its
performance.

Virtual Back-End Database Machine: A virtual computer
implementation of a back—-end database machine.

View: The description of the organization of a subset of the data
in a database.

Virtual Machine: The implementation of a complete computer
execution enviromment in software. The software which
implements the functions of a real piece of hardware.

Weak Solver: Any type of axtificial intelligence system which
operates without ihe use of domain specific knowledge to assist
in problem solving (see appendix C.3).

Writable Control Store: Memory which can be loaded under program
control, and which contains the microcode definitions of

operators which can be executed by the processor.

139

140

2. Computer Aided Design Applications [

The following are all types of applications of computers to engineering
and design. Computer aided design applications are discussed in section 1.2.
Computer Aided Deeign (CAD): The acrorym CAD usually denotes this
application area. A definition of CAD is: the use of
computers anywhere in the desigp process. As such, any of the
following applications fall within the scope of CAD. .

Computer Aided Drafting: This spplication is sometimes denoted
CAD. It is the application of computer graphics to the
production of drawings through assisting draftsmen.

Computer Aided Manufacturing (CAM): Computer aided manufactucing
is the combination of geometric modeling and numerical comtrol.
It permits a description of an object to be created within the
computer and automatically converted into manufacturing
instructions.

Computer Graphics (CG): Computer graphics usually refers to the
software tools and techniques for graphics, ard to the
development of innovative graphics applications. Any software
which uses the computer to produce graphical output applied to
engineering or design falls within this application area.

Design Automation (DA): Design automation is used to denote the
application of design and analysis software to the layout,
routing, and mask artwork of printed circuit boards and
integrated circuits.

Geometric Modeling: The geometric modeling application deals with
the deveiopment of mathematical models for the geometry of
physical objects. It usually consists of procedures to create,
manipulate, perform processing on (such as volume
compuistions), and display the descriptions of objects
[BaerA79, RequA80].

Numerical Control (NC): Numerical control is the application of
computers to provide corctrol mechanisms for automated milling
machines. NC is one of the oldest CAD application areas. ‘The
major application program is APT [RoseD59. RossD78], APT
provides a mechenism to convert user commands describing the
part to be machined into the control tapes used to operate a NC

milling machine.

141

3. Programming Languages

The following are some of the major computer languages which might be
used to support engineering applications, or which have unique features which
may be of value 1n the computerization of engineering problems. Programmiug
languages are discuesed in section 3.5.2 and 4.5,

Ada: The Department of Defense [DoD] has found that defense
contractors use & variety of languages to implement software.
To attempt to regain control and provide some standardization,
Ada [Dob80] has been designed. Ada is based on Pascal (see
below) with many of Pascal’s problems removed. It has a number
of additional features for use in real-time and multi-tasking
problems, Ada is a DoD standard, is being considered as a
national standard, and its future 18 uncertain.

Algol: Algol 60 [MaurP60, PerlA78] 18 the parent to the Algol
family of langusges. Although not widely used, its block
structuring and control structure concepts are now features of
the majority of new algorithmic languages.

Algol 68: Algol 68 is a revision of Algol, and it was designed to
overcome a number of difficulties in its predecessor. It
introduced a number of concepts, including preludes and
operator overloading [TaneA76].

APL: APL [FalkA73, FalkA78] was introduced ass a theoretical
language [IverK62], and implementations which are different
from the original language design have been introduced. APL
operates at a higher level than common procedural languages,
has a number of unique operators, and has a distinct style.
The data components are scalars, vectors, and matrices of
arbitrary dimensions. All operators are equally applicable to
all data items (A + B can represent the addition of scalars,
vectors, or matrices). A complex procedure in a conventional
programming langusge can often le coded in a simple APL
statement. However, the lack of common control structures,
such as loops, results in progrsms which solve problems in a
manner quite different from traditional languages.

LISP: LISP [McCaJ62, McCaJ78] and itw variants are the de facto
standard for artificial intelligence programs. The language
treats all programs and data items equally, as elements of

linked 1lists. This linked 1list form is the basic data item
supported by LISP. LISP is an extremely expressive language.
Programs which write and execute other programs by producing
the linked list representation of the program may easily be
developed. However, LISP is usually an interpreted language,
and it is very costly in terms of machine resource utilization.

Pascal: Pascal [JensK76] was designed as a student teaching

PL/I:

language, and is a successor to Algol. Because of the rational
basis for the language design, it has become quite popular for
many general applications. It is block structured and contains
all of the basic control and data structuring facilities. Due
to its original teaching unature, it contains a mumber of
serious deficiencies (particularly in I/O and compilation
facilities) which do not make it acceptable for large=-scale
enginecring applications.

PL/I [RadiG78] was introduced by IBM as a general purpose
replacement for both FORIRAN and COBOL, and to provide a system
implementation language. It is block structured and has an

extensive set of features and data structuring facilities,
s

4. Prograsmming Language Features

The following are various features of programming languages.

features are discussed in section 4.5.

Control Structures: Control structures provide the mechanisms to

Data

control the execution flow of a program. The various looping,
selection, and iteration constructs simplify the details of
programming. Resulting programs look cleaner and resemble the
desired processes rather than obscuring the process amid the
language statements required to produce the mneeded flow
control.

Structures: Data structures permit individual data items,
which are logically related, to be grouped into single
organizational and processing units developed to meet the
representational needs of a program. The data structures can
then be dealt with as an aggrngate, through formal programming

language mechaniamsg, rather than through ad hoc constructs.

st

142

Language

143

Data Flow Architecture: Data flow architecture is a new approach
to both hardware and programming languages. The classical
programming languages are control structure driven. The user
explicitly statenx the control paths used to transform the data
(Do X to datum Y to produce datum Z)., In data flow, the
program consists of descriptions of operators and data items,
without explicit flow statements. Associated with the data
items are the operstors which transform the data. The programs
are data driven. Whenever the input data for an operator is
present (1) the operator is invoked, (2) the data is
transformed by the operator, and (3) the precess continues
(When datum Y becomes present, perform X, yielding datum Z).
Such program forms simplify program development. Programs
transform data; programming a statement of the transformation
which can take place at any step 1is simpler that explicitly
coding all che actions which need be performed and the
interrelations and sequencing of control of these actions.

Envirorments: Language enviromments are sets of tools, oriented
towards a particular language, and used to assist in developing
programs in that language [FairR80]. The development of
complex systems requires more tham a computer and a compiler.
Language enviromments are design to help in such cases. They
provide the tools to help maintain, edit, and debug the
applications, as well as the abality to integrate applications
and support packages. Since these tools are oriented towards a
single particular language, they are more beneficial than
generic tools because the tools have a built-in knowledge of
the problem domain in which they operate.

Extensibility: Language extensibiliiy is the capability of a
language to support the definition of extensions to the
language without modifying the language compiler, Many
languages have a fixed set of features (data types, control
statements, data structures, etc.). Extensible languages have
a number of particular features which allow the details of the
language to be extended, to permit the langusage to be tuned to
an application, and to provide a more abstract set of features.
Operator overloading (see below) 1is an exswple of lstguage

extensibilaty.

5.

configurations in use today.
Batch: Batch is the classical type of system where all processing

Operator Overloading: Operator overloading is the ability to

define or redefine how an operstor is applied. In languages
such as Algol 68 and Ada, facilities exist to define how the
various operators act, based on the type of operand. For
examples, the "*" is defined to perform multiplication om
INTEGER, REAL, COMPLEX, and DOUBLE PRECISION types in FORTRAN.
Newer languages allow procedures to be written determining how
such an operator will perform for any type of operand. Thus,
k" could be extended to vectors or matrices, The compiler can
determine the zppropriate operator action (i.e., if A * B is
scalar or vector addition based on A and B), and can even
bandle the necessary coercion (converting data types such as
integer to real) to provide the correct data items. The
ability to "overload" the operators permits the data structares
to be changed, the definitions of the operators updated, and
the program recompiled wichout dealing with the actual code
whick uses the operators and which is wused to perform the

computations.

Computer Onerating Systems
The following are various type of computer operating systems and system

is dome wutilizing bulk input and output systems with no
interaction with the user from the time the job is submitted

until it is completed.

Distributed: Distributed systems consist of multiple linked

machines (ususlly at different sites). Data is available for
sharing among the components of the system, and the actual
processing of tasks is also shared (distributed) across the

entire system (sometimes automatically).

Networks: ¥etworks are created through the 1linking of multiple

systems to permit the sharing of system resources, and to
permit the transfer of data and programs between the machines
at the varicus nodes of the network. In & network, only the
data ie shared, The processing of tasks is explicitly assigned

to a particular machine.

144

Computer systems are discussed in section 3.5.3.

145
I

Satellite: Satellite systems are types of distributed systems.
They consist of a large gereral purpose computer at a cemntral
site and one or more subordinate satellite processors with
lesser capabilities. Data and processing is shared between the
central system and the individual satellites. A typical use is
to provide a satellite processor to drive a graphics display
subsystem, off-loading the graphics tasks which require a
dedicated system to obtain accepiable response time.

Time~Sharing: Time-sharing is the classical interactive system
where each user accesses the computing resource through a
terminal, and each user appears to be using a dedicated system.
All processing is done immediately after the user makes a
request, and all input and output is directed to the user’s
terminal.

Transaction Processing: Transaction processing is the use of on-
line terminals for simple data entry and inquiry. This is
typical of the activities done in banking and airline
reservation systems. A simple request (tramsaction) or piece
of data 18 entered and completely processed by the tramsaction

processing application as a single unit.

146

VITA

Daniel Robert Rehak is a native of Leechburg, Pennsylvania. He was born
on May 11, 1951 in Wilkensburg, Pennsylvania. In 1969 he graduated from
Leechburg Union High School, Leechburg, Pennsylvania, and Lenape Area
Vocational Technical School, Ford City, Pennsylvania. Attending Carnegie-
Mellon University, in Pittsburgh, Pennsylvania, he received a Bachelor of
Science Degree in Civil Engineering in May 1973. He served as an
undergraduate research assistant, and was awarded fourth place in the Lincoln
Arc Welding Foundation Student Design Competition in 1972,

Mr. Rehak began his graduate studies at Carnegie-Mellon University, ard
received a Master of Science Degree in Civil Engineering in November 1975. He
served a8 a research assistant in the Department of Civil Engineering
participating in a project to develop a pilot version of a mnational
engineering software center.

From September 1974 to May 1975, Mr. Rehak attended George Washington
University, Washington, D.C. He served as a research assistant in the JIAFS
program at NASA Langley Research Center, Hampton, Virginia.

Since 1975, Mr. Rehak has beer a praduate student at the University of
Illinois, where he has been a research assistant in the Department of Civil
Engineering. During this time he also has held minor appointments with the
U.S. Army Coxps of Engineers, Construction Engineering Research Laboratory
(CERL), Champaign, Illinois, and the Coordinated Sciemce Laboratory of the
University of 1Illinois. His research has been in the fields of computer
applications to engineering problems, development of engineering computer
systems, computer graphics, and finite element systems. From 1976 through
1978 he held a University of Illinois Fellowship.

Mr. Rehak has coauthored several technical reports and papers on the
subjects of the research conducted at Carnegie-Mellon University and the
University of Illinois. He has been employed as a private consultant for the
development and wutilization of engineering software. He is & member of Phi
Kappa Phi and Sigma Xi honorary £fraternities, and is a member of the

Association for Computing Machinery.

