
www.manaraa.com

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the
most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following explanation of techniques is provided to help you understand
markings or notations which may appear on this reproduction.

l.The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an
indication that the film inspector noticed either blurred copy because of
movement during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that should not have been filmed, you will find a good
image of the page in the adjacent frame. If copyrighted materials were
deleted you will find a target note listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photo­
graphed the photographer has followed a definite method in "sectioning"
the material It is customary to begin filming at the upper left hand corner of
a large sheet and to continue from left to right in equal sections with small
overlaps. If necessary, sectioning is continued again—beginning below the
first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography,
photographic prints can be purchased at additional cost and tipped into your
xerographic copy. Requests can be made to our Dissertations Customer
Services Department.

5. Some pages in any document may have indistinct print. In all cases we have
filmed the best available copy.

University
Microfilms

International
300 N ZEEB RD , ANN ARBOR, Ml 48106

www.manaraa.com

8203557

REHAK, DANIEL ROBERT

COMPUTER AIDED ENGINEERING PROBLEMS AND PROSPECTS

University of Illinois at Urbana-Champaign PH.D. 1981

University
Microfilms

I n t S r n S t i O n S l I 300N ZeebRoad,AnnArbor,MI48106

www.manaraa.com

COMPUTER AIDi'.D ENGINEERING
PROBLEMS AND PROSPECTS

BY

DANIEL ROBERT REHAK

B.S., Carnegie-Mellon University, 1973
M.S., Carnegie-Mellon University, 1976

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Civil Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1981

Urbana, Illinois

www.manaraa.com

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

May 3981

WE HEREBY RECOMMEND THAT THE THESIS BY

DANIEL ROBERT REHAK

ENTITLED COMPUTER AIDED ENGINEERING

PROBLEMS AND PROSPECTS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

T1TK ni?.r,BF.l? OF DOCTOR OF PHILOSOPHY

//JJL
/i f , A Director/of Thesis Rescarcli

(_̂ -- i Head of Department

Committee on Final Exahurjationf

.. . v 5X
Chairman

£-MJA£JULJ1A, X 4 foe ̂ _

t Recftfircd for doctor's degree but not for master's

www.manaraa.com

iii

ABSTRACT

We are now entering '.ha third decade of engineering computer

applications. In the past twenty years, the computer has become a requisite

tool in civil engineering. One is hard-pressed to imagine the analysis and

design of structures such as high—rise buildings vexemplified by the Sears

Tower, John Hancock Building, World Trade Center, etc.) without such a

powerful computational tool. Unfortunately, the computer is still used as a

basic tool, and has not been fully integrated into the design process. There

has been a significant increase in the scope, range, and power of the computer

applications, but there has been little progress in the development of an

integrated computer aided engineering environment.

The computer has the potential to take a much larger role in the

engineering design, analysis, construction, and project management processes.

The use of computer systems to maintain the large volume of data present for a

project, to verify the compliance with standards, and to provide project

management, in addition to its traditional design and analysis role is

desirable. Integration of the computer throughout the design process can

produce better engineered systems by allowing the computer to assure

consistency, completeness, and compliance, in a rigorous manner, throughout

the design cycle; the current lack of these aspects is a major problem.

Attempts to advance computer utilization in engineering are being blocked

by the current state of engineering software technology. Much of the software

being used was developed in the mid-sixties. There have been some changes in

the underlying software concepts utilized, but a large portion of current

software is rooted in the computer technology of the sixties. In order to

move forward and provide future advanced engineering systems, significant

changes in engineering software systems are required.

Two problems, (a) the design of an integrated multi-disciplinary

engineering design software system, and (b) interfaces to finite element

systems, are presented to show: (1) why the current state of engineering

software technology is not capable of supporting the development of advanced

engineering computer systems, and (2) what types of capabilities are needed in

these systems. Particular issues discussed in detail include: standards

processing, data management and handling, program interfaces, and logic and

process control.

www.manaraa.com

iv

To develop the next generation of engineering computer systems, advanced

computer technologies must be integrated into engineering software. Topics

such as relational database management and knowledge based artificial

intelligence are discussed, and it is shown how aspects of these technologies

can be applied to the problems currently limiting engineering software. These

technologies provide the basis for a proposed software environment which may

be used to develop advanced computer aided engineering software systems.

www.manaraa.com

V

PREFACE

The presentation contained herein is the result of two pilot studies by

the author:

(a) The design and implementation of a general purpose multi-

disciplinary computer aided design system.

(b) The design and implementation of user interfaces to finite

element software.

Both of these problems have a straightforward description, and the form and

style of the desired solutions is known. Unfortunately, a straightforward

implementation of the solutions, based on current engineering software

practice, is not possible. The difficulties in developing complete solutions

to these problems lies in the current state of software for engineering

problems. These complex engineering software systems require complex software

solutions, software beyond the scope of that currently used in engineering

application programs. As a result, this thesis has evolved as a discussion of

the software issues which need be addressed in order to advance the art of

computer applications in engineering.

This thesis deals with the software engineering of a proposed new

generation of engineering software systems. The resulting discussion, and the

topics on which it is based, are interdisciplinary in nature. The

presentation deals with both the engineering nature of the problems associated

with developing such software systems, and with a variety of computer science

topics and techniques which are used in the proposed solution.

Organization: Chapter 1 provides background information on computer

applications in civil engineering. It presents a review of the evolution of

computer utilization in civil engineering applications, a definition of

computer aided engineering, and a presentation of the objectives and scope of

this research.

In chapter 2, the two problem domains: (a) the design of an integrated

multi-disciplinary engineering design software system, and (b) interfaces to

finite element systems are presented. A description of the problem domain,

the capabilities needed for a solution, and the status of solutions to the

problems are presented.

www.manaraa.com

v i

Spec i f i c problem areas , which are independent of any app l i ca t ion domain,

and which l imi t the development of advanced engineering computer systems, a re

presented in chapter 3 . This chapter deals only with the var ious problem

a reas . The problem areas a re each t rea ted ind iv idua l ly and independently of

any p o s s i b l e s o l u t i o n s .

Chapter 4 contains the desc r ip t ion of a v a r i e t y of too l s and techniques

which might be used to develop solut ions to the problems discussed. Each of

the so lu t i on techniques may be appl icable to one or more of the problem areas

of chapter 3 . These techniques w i l l be r e l a t e d to the problem a r e a s , but each

of the techniques w i l l be t r ea t ed i n d i v i d u a l l y .

Chapter 5 proceeds to descr ibe a proposed prototype computer aided

engineering software environment which could be used to develop advanced

computer a p p l i c a t i o n s for engineer ing. Al l of the var ious so lu t ion techniques

are combined in an in tegra ted system to address a l l of the problem a rea s . The

reader may skip d i r e c t l y from chapter 1 to chapter 5 i f he des i r e s only

information on the proposed s o l u t i o n .

A summary and d iscuss ion of the proposed software system, along with i t s

app l i ca t ion to the spec i f ic problem domains presented in chapter 2, a r e

contained i n chapter 6 .

Many of the t o o l s and techniques used in the proposed engineering

software environment are taken from s t a t e - o f - t h e - a r t research in computer

science and software engineering and are fore ign to c i v i l engineering and many

of the readers of t h i s t h e s i s . For the readers convenience, a shor t

in t roduc t ion to some of these topics i s presented in the appendices.

Add i t iona l ly , there i s a g lossary to present d e f i n i t i o n s for many of the terms

used throughout the t e x t .

Acknowledgements: The author wishes to express h i s apprec ia t ion to h i s

advisor, Professor L. A. Lopez, for his a s s i s t ance throughout t h i s study.

The C i v i l Engineering Systems Laboratory of the Univers i ty of I l l i n o i s

(CESL) and the Department of Civ i l Engineering provided unlimited access to

the Burroughs B6700 and PDP 11/04-GT41 computing f a c i l i t i e s . The a v a i l a b i l i t y

of these resource" , rnd the i n t e r ac t i on with the user community and facul ty

provided invaluable ins igh t and experience throughout t h i s study.

F inanc i a l support provided by Universi ty of I l l i n o i s Fellowships and

Research A s s i s t a n t s h i p s is g r a t e f u l l y acknowledged.

www.manaraa.com

TABLE OF CONTENTS

Page

ABSTRACT i i i

PREFACE v

TABLE OF CONTENTS vii

LIST OF FIGURES xi

CHAPTER

1 . INTRODUCTION 1

1.1 Computer Applications in C i v i l Engineering 2
1.2 Computer Aided Design / Computer Aided Engineering 4

1.3 Objectives and Scope 7

2 . TWO PROBLEM DOMAINS IN ENGINEERING SOFTWARE SYSTEMS 10

2.1 Problem A — A Computer Aided Design System 10

2.1.1 Problem and Motivation 11
2.1.2 System Description 14
2.1.3 System Components 15
2.1.4 Current S ta tus 17

2.2 Problem B — U s e r In ter faces for F i n i t e Element Systems . . 18

2.2.1 Problem and Motivation 18
2.2.2 In te r face Descript ion 21
2.2.3 In te r face Components 21
2.2.4 Current S ta tus 26

3 . SOME SPECIFIC PROBLEM AREAS 27

3.1 Standards Processing 27

3 .J .1 Linkage 28
3.1.2 Access 29
3.1.3 Changes 30
3.1.4 I n t e r p r e t a t i o n 30
3.1.5 Feedback 31

3.2 Data Handling 32

www.manaraa.com

viii

Page

3.2.1 Information Flow 32
3.2.2 Consistency and Integrity 33
3.2.3 Data Representation . 33
3.2.4 Process Integration 35
3.2.5 Context and Access 37

3.3 Control 38

3.3.1 Design Algorithms 38

3.3.2 Presenting the Algorithms 39

3.4 Interfaces 40

3.4.1 Form and Style 41

3.4.2 Techniques 42

3.5 Computer Technology Base 43

3.5.1 Hardware 44

3.5.2 Languages 44

3.5.3 Systems 45

4. TECHNIQUES FOR ENGINEERING SOFTWARE SYSTEMS 46

4.1 Relational Database Management Systems . . . 46

4.1.1 Background . 46

4.1.2 Problems Addressed 47
4.1.3 Advantages 48
4.1.4 Disadvantages , 50

4.2 Context and Scope 51
4.2.1 Problems Addressed 51
4.2.2 Advantages 52
4.2.3 Disadvantages 54

4.3 Knowledge Based Systems 54

4.3.1 Background 55
4.3.2 Problems Addressed 56
4.3.3 Advantages 57
4.3.4 Disadvantages 59

4.4 Virtual Machines 60

4.4.1 Background 61
4.4.2 Problems Addressed 62
4.4.3 Advantages 62
4.4.4 Disadvantages 63

www.manaraa.com

ix

Page

4.5 Languages 63

4.5.1 Background 63

4.5.2 Problems Addressed 64
4.5.3 Advantages 64
4.5.4 Disadvantages 65

5. A COMPUTER AIDED ENGINEERING SOFTWARE ENVIRONMENT 66

5.1 The System Environment 67

5.1.1 Engineering Relational Database Management System . . 67

5.1.2 Knowledge Based System Kernel 70
5.1.3 Standards Processing System 71
5.1.4 Interface System 71
5.1.5 Project Manager 74
5.1.6 Design Processor 74
5.1.7 Overall Organization 74

5.2 The Support Environment . 75

5.2.1 Standards Support 76
5.2.2 Knowledge Integration , 77
5.2.3 Development Tools 78
5.2.4 Operational Tools 79
5.2.5 Overall Organization 79

5.3 The Application Environment 80

5.4 The Software Environment . 82

6. DISCUSSION 89

6.1 Why the Problems are Currently Unsolvable 89

6.2 Application to the Problem Domains 92
6.2.1 Problem A — A Computer Aided Design System 92
6.2.2 Problem B — U s e r Interfaces for Finite Element

Systems 93

6.3 Unresolved Issues 94

6.3.1 Computer Technology Base 95
6.3.2 Social and Legal Issues 95

6.4 Conclusions 96
6.5 The Next Step 99
6.6 Epilogue 101

REFERENCES 102

www.manaraa.com

X

APPENDIX Page

A. FINITE USER'S WISH LIST 112

B. DATABASE MANAGEMENT 122

B.l The Evolution of Database Management Systems 122

B.2 Database Management Systems Structure 125

B.3 The Relational Approach 126

C. ARTIFICIAL INTELLIGENCE 129

C.l Artificial Intelligence Concepts and Research 129

C.l.l Concepts 129

C.l.2 Problem Solving Domains 130
C.2 Production Systems 132

C.3 Knowledge Based Systems 134

GLOSSARY 137

1. General 137

2. Computer Aided Design Applications 140
3. Programming Languages 141
4. Programming Language Features 142
5. Computer Operating Systems 144

VITA 146

www.manaraa.com

xi

LIST OF FIGURES

FIGURE Page

1.1. Software Technology 5

2.1. Desisn Loop 12

2.2. Finite Element System Configuration 22

3.1. Process Integration Configurations 36

5.1. CAESE Configuration 83

5.2. Standards Processing System 85

5.3. Knowledge Processing System 86

5.4. Interface System 87

5.5. Application System 88

6.1. Software Technology 98

6.2. CAESE Implementation Schedule 100

B.l. Data Models 124

www.manaraa.com

1

1. INTRODUCTION

The creation of engineered systems is an ill-defined and complex task.

It is a cooperative effort between a sponsor or client, a design team, a

constructor or manufacturer, and possibly the users of the product. Each

member of this group has his own (potentially conflicting) concepts and goals

for the project, and these affect the final product. Decision making,

commuuications, and information management play major roles in the design

process. As projects grow more complex, informal methods for communications,

information management, and decision making tend to break down, resulting in a

decrease in the quality of the final product (measured in time to produce,

costs, or by some physical quality attribute). As a remedy, engineering

oriented design systems based on modern computational technologies can

potentially provide a formal communications, information management, decision

support environment to assist in the engineering process, in addition to

providing the more traditional analytical and computational tools.

The work contained herein is a discussion of the various problems which

limit the development of such computer systems, and a discussion of techniques

for addressing these problems. The presentation is oriented towards, and

based in, the civil engineering design domain. Civil engineering represents,

possibly, a worst case situation: the various groups involved in the design

of a project are usually associated with different organizations; the

projects are long-term; individual projects are unique; numerous

subdisciplines are involved; there are a variety of governing constraints,

regulations, specifications, and standards; absolute measures for judgement

and comparison do not exist; the design process is ill-defined and ill-

structured; and of course, everything is subject to time varying change.

This situation is not limited to civil engineering, but rather, it is the norm

in civil engineering. As a result, the presentation which follows should not

be viewed as limited to civil engineering, but as a discussion of a general

problem common to all engineering disciplines, and which is exemplified in

civil engineering.

www.manaraa.com

2

1.1 Computer Applications in Civil Engineering

Computer utilization within civil engineering is entering its third

decade. Since the introduction of COGO [MillC61] and STRESS [FenvS64], usage

has increased to the point where costs of computer utilization in structural

mechanics alone are measured in billions of dollars per year [SchaH78]. It is

difficult to imagine the design and construction of modern structures without

computer assistance.

COGO and STRESS were among the first general purpose applications, and

they were responsible for setting the tone and style of future developments.

From the user's point of view, some modern applications appear similar to

these original programs. Additionally, STRESS and COGO are still actively

used. Their popularity is due to their effectiveness and ease of use. They

have often been replaced by similar programs with extended capabilities, but

engineers are reluctant to change their tools without need. If they are to be

accepted by the profession, new engineering computer systems must provide more

than a better way to do the same thing.

From these beginnings, computer utilization has expanded into numerous

problem domains, including: hydrology, transportation planning, project

control and scheduling, estimating, automated drafting and detailing, finite

element analysis, geotechnical analysis, and component design and selection.

This horizontal expansion extends into all areas where the mathematical

procedures can be easily converted into automated computational processes.

Additionally, within each domain, there has been a vertical expansion, with

newer systems having extended the capabilities present in their predecessors.

However, in spite of the horizontal expansion, structural mechanics remains

the preeminent application area.

Structural analysis has seen a large vertical expansion of capabilities.

With the completion of STRESS, the developers felt the need for a system with

improved analytical capabilities. STRUDL [LochR67] was thus born, but its

development was hampered by the then current state of software (the techniques

used in STRESS required extremely complex hand coding). This resulted in the

development of ICES [RoosD66] to provide support for general civil engineering

applications (although there is nothing particular to the ICES concepts which

limit it to civil engineering).

The finite element methodology emerged at the same time. It requires an

advanced computational capability, and it is readily adapted to current

computer technology. The methodology and its software realization each

www.manaraa.com

3

contributed to the success and further development of the other. Software

development for finite element applications has continued at a rapid rate,

with all of the new programs attempting to overcome difficulties in, and to

provide capabilities lacking in, previous systems.

The large, general purpose finite element analysis systems all rely on

some type of underlying software support to assist in the program development

task and to provide run-time support. NASTRAN* relies on DMAP and GINO

[MacNR71, McCoC72, NASA72a, NASA72b] , SESAM on NORSAM [BellK73, Egel074,

Mo078], ASKA on DRS and now DVS [SchrE74, SchrE77, SchrE78, SchrE79], and

FINITE on POLO [LopeL72a, LopeL72b, LopeL77a, DoddR80]. In the latter case,

the development of the application (FINITE) was hindered due to insufficient

capabilities in the then available support software, and this necessitated the

development of a general support-supervisory system (POLO) prior to completion

of the application.

The support-supervisory systems (ICES, POLO, DVS, etc.) were developed to

ease the burden of programming large application systems. The typical

analysis program is written in FORTRAN, which does not provide any facilities

for data structuring, database support, or memory management. A generalized,

large-scale application requires complex data organizations to store and

utilize problem data. Additionally, many practical problems exceed the

available physical memory resource of current production computers. Explicit

programming of the details of handling all the data structures, and

development of techniques to fit needed data into the limited memory resource,

is a complex process. It results in programs in which the analytical

component is totally obscured by the details of resource and data management.

The support-supervisory systems attempt to eliminate this burden. They

provide data structuring facilities and run-time support for resource

management, databases, and input language translation. Although applicable to

any type of engineering analysis, the major systems supported are all

structural mechanics or finite element analysis systems.

Most organizations consider the computer to be only a computational tool.

In a recent U.S. General Accounting Office survey [GA080], the major reason

given for computer utilization was "to carry out tasks which would not be

practical using manual techniques," and the major task area was structural

mechanics. Essentially, engineers use computers to solve complex, time

consuming problems which can not be done by other means.

NASTRAN is a registered trademark.

www.manaraa.com

4

The limited application of computers outside structural mechanics is of

concern. The success of computers in the structural mechanics and finite

element analysis field is largely due to the timely development of the two

cooperating technologies. The computer can do more, but application areas

such as reducing thf> number of design errors and checking compliance with

standards currently account for only 2% and 1% of computer utilization,

respectively [GAO80]. The computer's information handling ability is well

suited to the design process. The use of a computer based design system can

eliminate much of the routine processing and data handling performed by the

engineer. This will permit the engineer to become more productive. He will

be able to evaluate more alternatives, and do a better job of design and

checking without increasing design costs. A more effective use of the machine

will allow the engineer to spend more time on the creative aspects of his

task.

This extension of usage of the computer has not occurred as rapidly as

one might like. Much of the previous software development effort has been

oriented towards specific applications with well-defined computational

procedures. Engineering software systems with decision support, information

management, and multi-user communications capabilities are desirable, but

these are more complex tasks than those which have been computerized in the

past, and for their development they requite the use of more complex software

techniques that those currently used. The relationship between software

technology and needs and requirements is shown in figure 1.1 [JensR79]. It is

the premise of this work that the development of engineering software,

particularly for nonanalytic processes, is difficult and hindered by the

current Btate-of-the-art in engineering software development, and without

advances in software technology, the range and scope of engineering computer

applications can not be readily expanded.

1.2 Computer Aided Design / Computer Aided Engineering

There has been an increase in the number of attempts to extend the use of

computers into all design domains, augmenting the computer's traditional

analysis roie. Active areas of development of software for design and

engineering applications include mechanical engineering parts manufacturing

and electrical engineering circuit and chip layout. Such efforts are denoted

by a number of names and acronyms such as CAD (Computer Aided Design) and CAM

(Computer Aided Manufacturing). These and various other names and areas of

work are described in more detail in the glossary (section 2).

www.manaraa.com

Time

Figure 1.1. Software Technology

www.manaraa.com

6

There is a problem in that there are no clear definitions of what

constitutes a design and engineering computer application in a particular

problem domain. Anyone may classify a process, technique, or program into any

of the fields oi computer applications to design and engineering. The problem

is particularly acute when dealing with CAD. There have been numerous pieces

of software which have been denoted as CAD systems. However, it is most often

the case that this software only provides some graphics display capability or

analysis function which is used in some particular phase of the design

process. Such software usually has a very narrow scope. Although such

capabilities do fit into the definition of having the computer provide some

assistance in performing design tasks, one is left with the feeling that

something is missing. Design is usually considered to be an ill-structured

creative selection process, the process of selecting components and

configuring the form of an engineered system. Analysis and presentation are

important components of the overall engineering design process, but they are

usually considered to be subservient activities to the total process.

As a result of the above situation, the phrase "computer aided

engineering" has been used herein to describe the applications of computers in

the more traditional Jeeign and engineering role. The following is used as a

working definition throughout this presentation.

Computer Aided Engineering: The application of an integrated, man-

machine, computational environment to the life-cycle process of

creating multi-disciplinary engineered systems.

In the definition, the following phrases are important:

integrated: Design consists of a number of separate processes,

each with their own data and computational needs. These

processes and their data should be automatically linked,

without the need for manual coupling of the various

computational aids used in the design process,

man-machine: Complex computations can not be performed blindly by

the machine. The engineer still must retain control, using the

computer to perform in a manner which will be most helpful to

the engineer. Engineering computer utilization must be a

synergism of man and machine,

environment: Comprehensive design programs can not be regarded as

simple tools to be picked up from the shelfj used, and

returned. These systems require the computer be a constant

www.manaraa.com

7

companion to the engineer. The various computational aids

should be incorporated into all phases of the design process,

and the procedures for design and engineering should rely on an

integrated support environment provided by a computer based

design system,

life-cycle: Design and engineering begins with the conception of a

project, and it continues throughout all steps, until the

project is constructed. For many projects the work continues

beyond construction, supporting changes, maintenance, and

updates.

multi-disciplinary: The design of a large project is not the work

of an individual, or of a group of experts from a single

discipline, but rather, it involves the cooperation of

engineers, specialists, and technicians from a variety of

areas.

Computer aided engineering systems should deal with all of these aspects

of engineering and design. Any system claiming to do computer aided

engineering must deal with aspects such as project control, data management,

process integration, and user communications all applied to large-scale,

multi-disciplinary, long-term, engineered projects. Any computer application

which fails to deal with all of these aspects can not be classified as one

doing true computer aided engineering. Unfortunately, most application

systems available today fail to meet these criteria.

1.3 Objectives and Scope

This work deals with the design and implementation (the software

engineering [JensR79]) of large, general purpose engineering software systems.

Such systems are designed specifically to support engineering and design

applications with the following attributes:

generalized: Specific applications are designed to solve one and

only one problem (possibly with some minor parametric

variations). Generalized or general purpose applications are

designed to solve all members of a large class of problems

(e.g., one program for all types of finite element structural

analysis as opposed to individual programs for flat plates, 2-D

plane stress and strain, cylindrical shells, etc.).

Generalized systems provide an extensive set of capabilities

www.manaraa.com

8

which can be applied in a majority of situations (but which are

possibly not the most efficient or most appropziate for any one

case). They are preferred because they present a uniform

problem solving approach for an entire problem domain, rather

than different approaches for many similar tasks,

large-scale: Large-scale systems are not constrained to a

particular maximum size of problem; they are designed to be

applied throughout the range of potential problem sizes, from

the smallest to the largest practical. Thus, the size of the

problem being solved need not influence the solution approach,

ill-structured: Design and engineering are ill-defined and ill-

structured tasks. Specific single component design may have a

well-defined and well-structured problem solving methodology,

but the "creative" design and engineering process which deals

with an entire engineered system is ill-structured [SimoH73].

"Each small phase of the activity appears to be quite well

structured, but the overall process meets none of the criteria

we set down for WSPs [well-structured problems]." The

interaction between, and complexity caused by, the individual

subprocesses creates a process which is ill-structured in the

whole.

Therefore, the scope of this work is that of the large-scale, generalized,

computer aided engineering Bystem for ill-structured problems. Such a system

is different from that which is used for any specific, well-structured problem

solving activity. This difference is due to both the level of sophistication

required to implement the features of a generalized engineering software

system, and the actual size of such a system (complexity grows in an

exponential fashion with increasing size and sophistication). This difference

necessitates an approach to software design and implementation which is

different from the approach used for the smaller scope problems. Throughout

this work, all of the discussion presupposes an orientation towards developing

a generalized systems approach for large ill-structured and ill-defined

problem domains.

Computer aided engineering systems (as defined in section 1.2) do not yet

exist. The brute force approach of building a computer aided engineering

system based on current software technology will not produce a system with the

desired sophistication. However, the application of current advanced software

www.manaraa.com

9

techniques does show promise. Just as with the development of ths prior

generation of support-supervisory systems, the current software base must be

expanded to meet the needs of the new applications. Several state-of-the-art

techniques from computer science such as relational database management and

knowledge based artificial intelligence must be brought into usage in

engineering applications.

The objectives of this work are to show: that there are several major

problem areas which must be solved before a computer aided engineering system

can be built, what capabilities are needed in such a system, techniques which

are available to solve these problems, and the structure of a proposed

prototype for the next generation of computer software for engineering

applications.

www.manaraa.com

10

2. TWO PROBLEM DOMAINS IN ENGINEERING SOFTWARE SYSTEMS

In order to better understand the difficulties in developing large-scale

engineering computer systems, two problems are presented and discussed:

(a) The design and implementation of a general purpose, multi-

disciplinary computer aided design system.

(b) The design and implementation of user interfaces to finite

element software.

These problems are treated individually. The discussion includes the motives

for solving the problem, a description and components of one possible

solution, and a summary of the status of software available to solve the

problem. The discussion is quite general, and does not address the details of

any particular solution. Rather, the purpose is to provide a flavor for the

types of problems which exist and which must be addressed in developing

software for engineering systems.

2.1 Problem A — A Computer Aided Design System

Large design projects are multi-disciplinary in nature. They deal with

large volumes of information, which must "flow" between members of the design

team. Additionally, they are guided and constrained by various design

standards. Information flow and standards present many problems in design.

There is the need to communicate up-to-date information between the members of

the design team, and to process the complex standards which govern the design.

Design is an information processing task, and the computer is an effective

information processor. A computer based design system could help with

standards processing and with the multi-disciplinary nature of design tasks,

potentially producing better designs at lower costs.

One philosophy for a computer based design system would be a generalized

support software system which is independent of design tasks and standards,

and which could be used as the base for developing specific, task oriented,

design systems. The computer aided design system problem is, therefore: to

design and implement a software system for use in a multi-disciplinary, long-

term, project oriented, design environment (similar to that described in

section 1.2).

www.manaraa.com

11

2.1.1 Probl m and Motivation

Engineering design is a complex process. It is iterative, subject to

many constraints, and multi-disciplinary in nature. One possible view of a

project oriented "design loop" is shown in figure 2.1. The project moves

through four phases: from a synthesis or conceptual phase, to preliminary

design, to detailed design, to construction.

Each of the first three phases of the design process consists of three

steps: (1) selection (design), (2) analysis, and (3) evaluation. This

process is performed by all disciplines, for all systems, subsystems, and

components which comprise the design. The state of the design proceeds from

the set of available information, with the processes providing new information

for the next phase. The evaluation of a component may, at any time, result in

a failure of the solution to meet criteria. This results in an iteration

within the phase, iteration to an earlier phase, or possibly a complete

failure of the process.

Throughout the design process, the design procedures are driven, and the

results are controlled, by a variety of standards, specifications, codes, and

constraints. The various provisions of the standards sometimes form the

basis for the engineer's design procedures. Often a design procedure will be

an implicit application of some provision of a standard. The standards used

in design may be either formal (and often legal) requirements, or they may be

informal requirements, expressed as project specifications or a client's

wishes. The attempt to conform to all of the governing standards influences

the structure and content of the design process.

There are a number of difficulties with the incorporation of standards

into programs. Currently, they are "hard-coded" (through explicit procedural

language statements) into the body of design programs. Standards are subject

to constant revision, and thus, they are constantly invalidating software.

This makes software which incorporates standards very expensive to maintain.

Standards are produced as compromises of committees, and as a result of the

compromises, the standard may not have a unique, accepted interpretation. In

addition, standards are subject to misinterpretation by programmers while

converting the textual form into a computer processable form (programmers are

usually inexperienced when compared to standards writers). Thus, it is not

Standards, codes, and specifications are all considered synonyms in this
discussion. Standards appears to be the preferred terminology and will be
used throughout the text.

www.manaraa.com

12

V
Conceptual
Design Selection

Preliminary
Design

Selection

Detailed
Design Selection

• Analysis

Analysis

Analysis

Figure 2.1. Design Loop

www.manaraa.com

13

unreasonable to assume that provisions will be applied incorrectly, and there

will be potentially serious errors of interpretation.

All design procedures require data. The results of one computation are

often used as input for another. Information flows through the design process

and is communicated between members of the design team. Although not commonly

thought of as such, this information is the design. Problems result when

engineers do not have the needed data, 01- if the data they do have is not

correct or up-to-date. Data availability is insufficient to successfully

complete a design. There is the need to verify that data and design results

do not violate any constraints, and that they are not in conflict with other

results and the remainder of the design. If such conflicts do exist, it can

only be hoped that they will be detected before the design is completed.

Unfortunately, there are no formal mechanisms for detecting such conflicts and

errors. The longer they go undetected, the more difficult and costly are the

resulting change orders.

Ideally, a data item will appear only once in the design data space (the

data space being the set of all logical data items used in the design). A

singular representation eliminates problems of data consistency and integrity.

However, a singular representation of data is not always the most appropriate.

There are multiple lpvels of representation and abstraction which are needed

at the various steps in the design process.

Integrated design systems are often built as ad hoc systems; the various

existing programs are pieced together to form the total system. Every program

has its own set of data structures, data representations, and data needs. It

is necessary to "map" the data between the various processes (integrating the

processes by providing translations of data forms and content). The data

mapping problem is complicated by data items which are inconsistent, or

missing. Since each process may communicate with many others, there is a

combinatorial expansion in the number of interconnections which must be made

as the system grows. The currently available alternative of providing a

centralized database (using a common data structure representation with all

processes mapping data to and from the database) is not much better. The

number of required mappings is smaller since it is proportional to the number

of processes. However, all of the various problems of representation and

missing data still exist. Both the distributed and centralized forms break

down when it is necessary to change any component. The systems are tightly

coupled; explicit data linkages exist (based on location, representation, and

content), and these must be modified to make most changes.

www.manaraa.com

14

Current integrated design systems do not have any information flow

capability. The fundamental problem is that there are no methods to determine

where data comes from, or what data will be affected by changes to other data.

There is no way to determine if the correct data is being used, or if the data

is consistent with known constraints. If a data inconsistency is detected it

is nearly impossible to determine the effects of such an inconsistency.

Similarly, if the data representations must be modified, there is no way to

detect the impact of such changes.

Although computer based design systems can assist in producing better and

more cost effective designs, and can eliminate some of the hand translation of

data passed between individual programs, the current systems do not have the

capabilities to deal with the combined procedural, data handling, standards

processing, and integration problems outlined above. Systems which do not

effectively address such problems are not adaptable or responsive to the needs

of the engineering users. It appears that current systems do not successfully

address these various problems. Thus, there is the potential for

significantly better computer utilization in the design process.

2.1.2 System Description

As a result of the aoove situation, a project was initiated to design and

implement an integrated system for computer aided design. The system was to

be used for large-scale, long-term, multi-disciplinary projects, and was to

address many of the problems detailed above. It was to be configured as a two

level system.

The lower level was to be application independent, providing general

system support software, but performing no actual design. This level would

provide the data management, information flow, user and hardware interface,

and standards processing capabilities to support design applications. The

information flow capability included the processes necessary to determine what

data was affected by changing another piece of data (data tracking). The

standards processing component permitted the use of standards without directly

coding them into the application programs. Standards processing would be

based on decision table technology currently available [FenvS66, GoelS71,

FenvS73]. By configuring the standards as decision tables, they could be

treated as data to the program, and standards revisions could be accomplished

by changing the decision tables. Thus, revisions would have minimal impact on

the remainder of the design system. Additionally, the system would have the

www.manaraa.com

15

capacity to integrate tanks through the database and data management

facilities (through a data flow based system). This use of a common core of

software to support the applications would be a major extension of Lhe

support-supervisory systems such as ICES [RoosD66], POLO [LopeL72a, LopeL72b],

and GENESYS [AlwoR72].

The actual design systems would be implemented on top of the support

level. The various design processing tasks, their databases, and the needed

standards would be assembled into an executable program unit to assist in

design. Various design domains, such ao bridges, dams, power plants,

buildings, etc., would each have their own separate design program, based and

built on the common support software.

2.1.3 System Components

A system which could provide the capabilities described above would

consist of a number of integrated subsystems. Each of these subsystems would

be responsible for handling one aspect of the total problem. The following is

a short description of the major components of a possible system and the tasks

they would perform:

Database Management System: The database manager would be

responsible for handling all data needs of the system and the

applications. It would maintain all databases and provide all

data access mechanisms.

Information Flow System: This is a component of the database

management system which would perform all the information

seeking, and data tracking to insure data correctness and

consistency.

Database Definition System: Database definition permits the

various components of the databases to be described, allowing

the databases to be structured, created, and documented

independently of any accessing process.

Standards Processor System: The standards processor would perform

all work needed to check a component against any applicable

provision of any standard. Whenever an action provided by a

standard was needed, the design module would suspend activity

and invoke this subsystem to perform the appropriate action.

www.manaraa.com

16

Standards Definition System: This system would allow the standards

to be defined and converted into their internal representation

so they could be utilized by the standards processor and the

application programs.

Report Generator: The report generator would be a programming tool

to support the development of tabular and report output.

Graphics System: The graphics system would provide programming

support for the development of graphical interfaces in

application programs.

Input Language System: This is a software tool which would provide

the translation facilities for user input languages for the

application programs.

Multi-user Communications: The design tasks are performed in

parallel by many engineers. It is necessary for them to

communicate with each other, regarding the status of the

project, and to resolve conflicts and errors detected by the

system. The multi-user communications system would provide the

necessary software to support these functions.

These components provide the basis for the support level. The support system

itself includes the software framework into which all of these components are

integrated.

In addition to the support system, there are a number of components which

are application systems when considered from the support system point of view,

but which are actually common to all design applications, and would be

included as part of the support system. These components include:

Information Storage and Retrieval System: This system would be

used by the engineer to access the various databases for data

inquiry, and to update and create entries within the databases.

It would provide a direct end-user interface to the database

management system.

Project Definition System: The project definition system would be

used to instantiate and control the projects of an application

system. The concept of a project, and its alternative

solutions, is independent of application domain. The concept

is common to engineering, and structuring applications to work

in a project oriented environment would parallel engineering

practice.

www.manaraa.com

17

Design Controller: The design controller would provide the

executive system with which the engineers access the

application tasks, and would handle all needed sequencing and

control to supervise design.

Application Utilities: There are a number of engineering tasks

which are quite general in nature. The alternative to each

application providing the code for such tasks would be to

provide a library of utilities which could be used by any

application. Utilities might include structural analysis,

optimization algorithms, and network algorithms.

The application tasks are developed using all of these support

components. This common support software must be augmented by a body of

application dependent processes, data structures, and standards. An

application development system would then be used to describe the various

components, their interrelations, and their structure, and to integrate these

components into the complete design system. Each design system developed in

such a manner could then be used.

2.1.4 Current Status

Some software is available which is used to perform design work;

however, it is usually quite limited in scope. Existing programs usually

operate by selecting a design from a set of possible choices within some range

of parameters (by an iterative trial and error process). Many other design

programs are simple graphics display programs. Some code checking programs

exist, but the standards are "built-in" and the programs are invalidated by

changes to standards.

A number of the basic toold used to implement such a support system as

described above exist, either in engineering software systems, or as computer

science techniques. These tools include: database systems, input language

systems, graphics systems, and a variety of software and techniques for

standards [HarrJ75a, HarrJ75b, WrigR75]. In addition, there are numerous

basic engineering analysis and computational modules.

There have been <iorae attempts at developing integrated support systems.

ICES, POLO, and GENESYS are examples, but all of these have been used

primarily to support large analysis applications. They provide only database

management, language translations, and other run-time support features. None

of the existing support systems provide any standards processing or

www.manaraa.com

18

information flow capability. Other systems such as GLIDE [EastC76, EastC77,

EastC80] include graphics capabilities, but do not address the standards

processing and information flow problems. IPAD (Integrated Programs for

Aerospace-Vehicle Design) [GarrC74, MillR74, BurnB78, IPAD80] is one of the

most recent systems. It is the first to address the long-term npture and

multi-user aspects of the problems, but it does not provide standards support

or information flow capabilities.

In summary, there are many systems and system components in existence.

However, none address all of the problems, and none have a technological basis

which appears to be capable of addressing today's needs.

2.2 Problem B — User Interfaces for Finite Element Systems

Experience has shown that appropriate user interfaces to finite element

software can have a significant increase on the productivity of the users.

These interfaces are usually neglected when the software is developed. As the

software for analysis becomes more complex, and is applied to larger problem

domains, better interfaces will be needed, and the interfaces will become more

complex.

2.2.1 Problem aid Motivation

Finite element analysis is one of the major application area of computers

in engineering. Users select a system based on the capabilities of that

system to solve the problem, or class of problems, with which they deal.

Since they desire the computer to be a tool, the selection is based, to a

large degree, on the applicability of the tool. Other aspects, such as

usability, maintainability, adaptability, etc., are not generally considered

as prime factors in selecting a system. If considered, these attributes are

used to select from different systems with comparable analytical capabilities.

Once a system is put into production for solving a given problem, the

user is affected in three areas: (1) the preparation of the input, (2) the

interpretation of the results, and (3) the direct execution costs. Using some

particular system, and for a given solution and modeling procedure, the user

has little control over the execution costs. However, the interfaces to the

system can have a pronounced effect on the productivity of the engineer and

the total solution costs.

www.manaraa.com

19

It has been estimated that modeling, data preparation, and result

interpretation account for 80%-90% of the total problem solving costs

[HernE74] (such values are dependent of the type of system being used and the

nature of the particular problem being solved). This is contrasted to the

fact that 80% of the software development costs are associated with the

mathematical and computational aspects of the program [HernE74], with only the

remaining 20% being devoted to user features. Improved data generation and

graphics capabilities are estimated to save from 40%-80% of the total costs

[WilsJ76]. This situation is contrasted to other software (commercial and

business systems), where interfaces and error handling are estimated to

comprise over half the code [DeMiR79].

This sad state of affairs is quite understandable. Early finite element

software was developed primarily in universities, or by other research

organizations. The software was usually a tool used to test and implement the

methodology, not to solve production problems. As such, immediate utilization

was of the greatest importance. Results for the research project superseded

software features. This attitude resulted in the development of a great deal

of "throw away" software. This was, and unfortunately still is, particularly

true in the universities. Such software was often created by a graduate

student for a single project, and was then discarded because of no further

need, lack of needed capabilities to solve other problems, or lack of

documentation [LopeL77b, LopeL77c, LopeL79b]. Unfortunately, in some cases,

some of this software survived and is now used by others, but the impact of

the computational aspects remains.

As a direct result of the lack of usability of software, and of the high

costs associated with the user aspects of the software, pre- and

postprocessors evolved. These are after-the-fact programs, designed to

enhance some part of the user interfaces. Most pre- and postprocessors are

usable with only one finite element program, and provide only a limited number

of features.

There have been some attempts at generalized, multi-host pre- and

postprocessors, but due to the diversity of all potential hosts, it is

extremely difficult to implement such a system. Each individual finite

element program has its own style; ranging from simple programs which accept

bulk, fixed format input for a single structure; to programs which accept

problem oriented language (POL) input for substructured models. The

underlying philosophical basis for the system's modeling and interface

www.manaraa.com

20

components are so different that a pre- and postprocessor must select either

(1) to implement a model and input/interface level which contains only the

simplest components available in all host finite element systems, thereby

eliminating the possibility of using any advanced features of any particular

host, or (2) it must implement a level as high as or higher than that of any

host and provide extremely complex translators to the lower level hosts. In

the second case, some translations may not be possible because of the lack of

particular capabilities in the low level hosts.

The types of features (model and results display, mesh generation,

renumbering, etc.) found in the pre- and postprocessors are quite similar due

to the structure of the majority of host systems. The underlying basis of the

newer finite element systems are such that the techniques currently applied in

pre- and postprocessors are insufficient to provide complete and adequate

interfaces for users.

As an example, concider FINITE [LopeL77a, LopeL79a, DoddR80], which

exhibits a number of user interface problems. FINITE has a problem oriented

language input system, for describing hierarchically substructured models.

There is a formal subsystem ("Library") for describing the input parameters,

and output quantities of the individual types of elements and material models.

Individual processes are written to compute element and material model

quantities, such as stiffness, stresses, loads, etc., and these are then

linked to the base system. The base system provides all input and output

functions and allows any element to be used with any other elements,

automatically. FINITE suffers serious drawbacks due to the lack of a

comprehensive graphics capability. A simple mesh plotter was developed to

fulfill the need for checking components of complex problems, but it is

limited in that it deals only with individual substructures, and it can not

handle the complex multi-level substructured model display problem.

Extensions of FINITE, via brute force programming and without the use of

sophisticated support software, to display models and results is possible.

Such an effort would be extremely complex and time consuming, but it would

solve the problem. It appears that the basic software technology used to

support FINITE has serious drawbacks and is not adequate to develop the needed

interface capabilities. This is in spite of the fact that the support

software technology underlying FINITE (provided by POLO) is one of the most

advanced of those in use today.

www.manaraa.com

21

The finite element interface problem is, therefore, to determine what

basic interfaces need be present in the base system to provide the needed user

capabilities, and what impact these features will have on the structure of

finite element software.

2.2.2 Interface Description

The interface problem is now considered assuming FINITE as the host

finite element system; however, the underlying concepts may be applied to any

generalized finite element system. This problem is, simply: to determine and

design all of the user interfaces needed to provide a convenient, effective

finite element system. When complete, the new system will have all of the

capabilities of the current system relative to structural modeling and

analysis, plus the capability to perform graphical display of all components

of the structural model and all results derived from the model.

2.2.3 Interface Components

A complete description of the design of the interfaces to FINITE is

beyond the scope of this work. Rather, the following is a description of a

proposed model of the system and the basic components of the solution

A proposed version of FINITE, with a complete set of interfaces, is shown

in figure 2.2. The system consists of three basic groups of components. The

first group is Lhe data space used to store all problem and system data. The

various processes used to model, compute, and present results, comprise the

second group. The third group consists of the various processes used to

interface to the external environment. The latter are dependent on the style

of the interface — not the data content (problem oriented language or fixed

format input and tabular or graphical outpuc are each different styles and any

can be used with either a substructured or a nonsubstructured model).

The system's operation can be viewed as a three level process. The user

is at the highest level. He creates a mathematical model of the problem and

obtains results in terms of this description. The problem description and the

results are stored in terms of the mathematical model, the second level. The

third level is the computation model which is used as the basis for performing

the actual analysis. The mathematical model must be consistent with the

computational model. There may be more than one mathematical model; however,

the system will most likely support only a single model (this one model

www.manaraa.com

22

Figure 2.2. Finite Element System Configuration

www.manaraa.com

23

assumption is used throughout the remainder of this discussion). The

interfaces must also be consistent with the mathematical model, although

several interfaces, each of a different type or style, are possible. In

FINITE, the computational model is based on a blocked hypermatrix model. The

mathematical model is one of simple multi-level substructures. The user level

is a direct implementation of the mathematical model, with tabular output of

model components and problem oriented language input for model descriptions

and control requests.

The various components of the system include:

Data Space: The data space consists of the following different types of

data groups:

Mathematical Model: This is a model of the problem being solved,

and it is based directly on the user's view of the problem. It

typically consists of descriptions of element types, topology,

geometry, parameters, applied loadings, etc.

Mathematical Results: These are the results of the analysis,

expressed in terms of the mathematical model. Typical

quantities include element stress and strain resultants.

Computational Model: This is a representation of the problem

expressed in the form used in the computational process. It is

typically represented by the stiffness matrices and applied

load vectors.

Computational Results: These are the primary results from the

analysis, typically structural displacements.

Run Time Library: These are element descriptions, such as nodal

degrees of freedom, which are used through the computational

process.

Library: This is the complete description of the elements which is

used throughout all processing steps.

Processes: The syBtem consists of the following processes. Normal

processing proceeds sequentially through the first six

processes given below.

Mathematical Model Input: This process is used to support the

individual input processors (model input interfaces). The

process is independent of the style of the input, and is

responsible for creating the mathematical model component of

the data space.

www.manaraa.com

24

Mathematical to Computational Model: This process is used to

convert the mathematical model to the computationaJ model.

Computational: This is the basic computational component of finite

element analysis. It computes all quantities in the

computational model and all computational results.

Computational Output: This process provides access to the

computational model for output purposes.

Computational to Mathematical Results: This process converts the

computational results into the set of mathematical results.

Mathematical Model Output: This process is used to support the

individual output processors (model output interfaces). Each

output process has its own style, and it is used to present

results to the user in terms of his mathematical model.

Librarian: The librarian is used to build and maintain the library

component of the data space.

Interface: The interface component provides the links between the user

and the mathematical model input/output processes.

Model Input Interface: Each of these implements a single style of

modeling. In FINITE, the user describes the mathematical model

directly. If the system were used for a particular class of

problems, such as regular framed structures or tubular pipe

intersections, an inpuc system could be developed which

converts a higher level problem description into the

corresponding mathematical model.

Model Output Interface: Each of these implements an output style,

and corresponds to a given input interface.

Element and Material Modules: These modules are not part of the basic

system. They exist for each type of element, and appear within

every process to perform element dependent computations. There

may be any number (fixed by the particular process) of types of

these modules. Typical modules would include element

stiffness, stress-strain, equivalent nodal loads, and residual

loads routines. Similar functions exist for materials.

Interface Modules: It will not be possible to provide, at the system

level, all the functions needed by all of the various interface

systems. These modules permit the basic input and output

processes to be augmented with specific routines to support the

www.manaraa.com

25

interface developer's needB, such as special purpose data

generators for particular model interfaces.

The above provides a suitable model for the various components of the

system. Such a system would permit a variety of interfaces to be implemented.

FINITE users have expressed the desire for a number of additional

interface and system features. From these, a "User's Wish List" has been

compiled. This list, presented in appendix A, discussec not only the types of

requests, but also what aspects of the current system are affected by

providing such changes, and the order of magnitude of the proposed tasks.

In order to implement these requested and needed interfaces to FINITE, a

number of basic support components and capabilities must be added to the

support-supervisor (POLO). The following is a short description of the

components needed to support the system model and the various user interface

features:

Input Language System: POLO provides a token oriented language

translation facility. Translation of higher level language

constructs, and a system which is input device independent

(supporting both textual and graphical devices) is required.

Graphics System: Portable, device independent graphics support

software is needed for development of input, model display, and

result display functions.

Report Generator: This tool would provide the software support for

developing all forms of tabular output.

Information Storage and Retrieval System: This system would

provide the end-users with the means to interrogate and modify

any component of the system data space without explicit

programming.

Log, System Status, and Error Handler: All handling of problem

status, error handling and recovery, and the logging of system

messages is currently performed in an ad hoc manner. A common

Bet of support components for these features would provide the

needed capabilities.

Engineering Data Management: The POLO data manager treats all data

equally and recognizes only certain hierarchical structures.

An extended data manager is needed to handle more of the types

of data used in finite element analysis.

www.manaraa.com

26

2.2.4 Current Status

There are a variety of algorithmic procedures available for implementing

interfaces and performing many of the above tasks. A large number of

algorithms have been published on data generators (both two dimensional, three

dimensional, and special purpose), renumbering algorithms, stress averaging

procedures, mesh display, etc. The problem lies in selecting which procedures

are the best, and which have the most general applicability for a general

purpose system.

Basic software tools for providing both graphics and problem oriented

language translation also exist. Tools for tasks such as engineering report

generators do not exist. However, the wisdom of using some of the tools is

questionable. For example, consider the use of a machine and device

independent graphics package, which would conform to the proposed (core

system) standard [GSPC79, MichJ78]. There are benefits due to portability of

such standard software, but there also axe problems because surh a system is

not well suited to the application. The core system provides a number of low

level graphics operations. Applications such as finite element mesh display

require more abstract, higher level operations. The additional software

needed to provide such operations is quite similar in form and capabilities to

that of the core system. Thus, it may be appropriate to develop a special

purpose package, and eliminate the redundant capabilities.

A variety of implementations of interfaces to finite element systems

exist. Many of these are pre- and postprocessors. In most cases, the

implementations are designed to address a number of deficiencies in the host

system, and have no particular design philosophy or basis. They just exist as

software to improve usability. This results in questions concerning the

generality and applicability of the ideas and concepts to other systems.

There appear to be sufficient tools and techniques to provide the various

features for, and extensions to, a system such as described above. However,

it requires the development of a large body of software. Potentially, new and

better software tools could significantly reduce this effort and

simultaneously provide a better solution to the finite element interface

problem.

www.manaraa.com

27

3. SOME SPECIFIC PROBLEM AREAS

Attempts to implement solution systems for the two problem domains

described in chapter 2 have not been successful. The lack of success is due

to the complex nature of the problems combined with the current state of

engineering software technology. There are a number of specific, fundamental

problems which must be resolved in order to develop acceptable solution

systems. Five of the most significant will be discussed below. Each of the

specific problem areas will be treated individually, and a discussion of

potential solution techniques and systems is deferred to chapters 4 and 5.

The emphasis of the discussion is that of presenting a technical description

of the types of problems which arise in developing engineering software. The

implicit assumption throughout this discussion is that these technical

problems must be successfully addressed in future software systems.

The five problems discussed are: (1) standards processing, (2) data

handling, (3) control, (4) interfaces, and (5) the computer technology base.

The last four problem areas are applicable to any problem domain (including

those of chapter 2). Explicit standards processing does not appear in all

types of problems (in some areas of engineering the explicit use of standards

is not required). However, standards are a major problem area in civil

engineering systems, and are required for a system which performs civil

engineering design and checking.

3.1 Standards Processing

Standards have a great influence on the engineering design process. They

have two basic uses: (1) compliance checking of a given design, and

(2) providing a procedure for component selection. In the latter case, the

various provisions often form the basis for design heuristics which are

sometimes implicitly used by the engineer. Standards are usually thought of

as formal bodies of provisions, such as AISC (American Institute of Steel

Construction) [AISC80], ACI (American Concrete Institute) [ACI71], UBC

(Uniform Building Code) [UBC76], or ASTM (American Society for Testing

Materials). In many cases they are also legal requirements which must be met.

Formal standards do not specify all criteria for a project; there are many

informal criteria and client needs and wishes which must be combined to form

www.manaraa.com

28

the complete set of project standards which are used to control the design.

There are a number of issues to be dealt with in the computerized utilization

of standards. Those of importance to this work are: (1) linkage, (2) access,

(3) changes, (4) interpretation, and (5) feedback.

To date, the standards which are used arc deterministic in nature. They

describe explicit rules, procedures, and checks which must be made, or to

which a design must conform. Reliability based standards are now being

proposed. These standards are used to determine an overall measure of

reliability of a system, as opposed to determining the safety of an individual

component. With the exception that compliance checking in a reliability based

standard is done on an overall system level, rather than at the level of each

individual component, the problems of the computer utilization of such

standards appear to be identical to those which arise in the use of

traditional deterministic standards.

3.1.1 Linkage

Standards require data for their use. They must be "linked" to the

various data structures and data present in the design space. However,

standards are data context independent; they represent provisions which are

applicable to any component in a given class of problems. They are used in a

wide variety of contexts, and in each class of problem the data can exist in

different representations (see section 3.2.3). For a given type of engineered

system, there are many components, each with potentially different

descriptions, which must all conform to the same standard. There must be a

mechanism for linking the specific data structures and data representations

used in the computer to the context independent description of the applicable

provisions which constitute the standards.

As an example, consider the following provision for allowable stresses in

tension members, taken from the current (1978) AISC Specification [AISC80].

In this section, Specification is used to denote the AISC Specification
[AISC70, AISC80].

www.manaraa.com

29

1.5.1.1 TENSION

Except for pin-connected members, Ft shall not

exceed 0.60Fy on the gross area nor 0.50F„ on

the effective net area.

For pin-connected members: Ft •» 0.45Fy on the net area.

For tension on threaded parts: See Table 1.5.2.1

The provision explicitly references (by symbolic name as used in the

nomenclature of the Specification): Fu (ultimate stress), Ffc (allowable

stress in tension), and Fy (yield stress). The provision requires the net

area (AQ) and the gross area (A), although these data items are referenced by

generic name. The applied load (P) may be implicitly required for the

computation of Ffc. Also, each part of the provision is dependent on the

conditions of "pin-connected" and "threaded parts." Proper utilization of

this provision may require that all or part of these data items be known.

The nomenclature to the AISC Specification lists about 150 items, but

over 400 different data items have been found to exist [FenvS69]. Any

application program using this standard must be able to find and access all of

these generic items for the design or checking of actual components.

3.1.2 Access

The access problem is one which is of concern not only in computerized

standards processing, but also in the manual usage of standards. Basically,

the problem is that of knowing what provisions of the governing standards are

applicable to any step in producing the design. How does an engineer know

that a provision exists or should be applied in a given case? Such

information is not explicitly given in the standards.

For the provision shown above, the engineer must know he is dealing with

a member that is governed by tension. How does he determine that the bending

stress in a truss member is negligible, or that axial stress in a beam does

not require that it be treated as a column, and that the corresponding

provisions of the Specification are not utilized? The alternative is to

exhaustively check all provisions in the Specification.

www.manaraa.com

30

3.1.3 Changes

Many of the problems associated with standards would not exist if

standards did not change. If they were invariant, the various linkages and

access paths could be hard-coded into programs without serious consequences.

Standards are currently used in programs in this manner. When a new edition

of a standard is produced, all existing software based on the old version is

invalidated. It is desirable to rapidly incorporate changes to standards into

existing software with minimal impact on the software.

The provision shown above has changed from the previous (1969) version of

the AISC Specification [AISC70].

1.5.1.1 TENSION

On the net section, except at pin holes:

Ft - 0.60Fy

but not more than 0.5 times the minimum tensile

strength of the steel.

On the net section at pin holes in eyebars,

pin-connected plates or builtup members:

F u = 0.45Fy

For tension on threaded parts see Table 1.5.2.1.

The change ifa not a simple modification of the factors-of-safety, or of the

equations used. It is a philosophical change, safety against yield is now

based on the gross area, as opposed to the net area of the member. The change

appears as a modification of the explicitly required data (gross area is

implicitly required for the computation of net area, but this computation may

be performed externally to the utilization of the provision). Changes to a

program would require the addition of a new datum, gross area of a tension

member, which was not present in the previous Specification. Such changes may

be extremely difficult to implement when standards are hard-coded into

application programs.

3.1.4 Interpretation

Standards must be translated from the written textual form to some

computer processable form. The standard's developers are experts in their

field. Typical software implementors are junior engineers or scientific

www.manaraa.com

31

programmers (because of their knowledge of computers). These people do not

have the expertise and experience to develop programs for standards processing

without the risk of misinterpretation of the standard. The standards

developers, standards experts, and experienced engineers are often too busy

addressing complex engineering problems to devote their time to assist in

software development (the problem of lack of commitment of experienced

personnel to assist in software development, due to these people's apparent

misconception that they are not important in the development of software,

exists in most areas of program development [JensR79]).

The source of the interpretation problem lies not only with the software

implementors, but also with the standard's writers. The form and style the

writers use in developing the original standard is the cause of some problems

[HarrJ80].

Interpretation errors may result in the incorrect encoding of a

provision, access to incorrect data, or utilization of the wrong provisions.

Equally as serious as the original interpretation problem is the lack of

methods to verify the resulting software.

3.1.5 Feedback

Compliance with a deterministic standard is typified by a binary result:

provision satisfied, provision violated. The actual usage is not so simple.

When a criterion is violated, it is necessary to know why the criterion

failed, and what changes are needed to satisfy the criterion. Fui; example, if

a tension member is unsatisfactory there are two possible causes, based on the

yield stress and the ultimate stress criteria. For either failure mode, three

different alternatives exist: reduce the load, increase the area, or increase

the steel strength. At any step, the list of potential alternatives can

become long and complex. Guidance is needed to determine which of the

alternatives are plausible and likely to be successful. Similarly, if the

check is successful, it may be the case that another, more economical, design

would also be satisfactory.

The test of compliance of the design of a component with a provision is

not an absolute test. For the provision shown, with steel (A36) with yield

stress (Fy) of 36 KSI, the basic allowable stress limit is 21.6, but the

Specification itself rounds the value to 22. An engineer judges all results

within the range of acceptable engineering accuracy. The computer will

perform only absolute numerical checks. This engineering accuracy is also

www.manaraa.com

32

context dependent. When the engineer knows that a criterion does not govern

or that the consequences of failure are reduced, he is likely to increase the

range of what he judges to be acceptable. It is nearly impossible to build

this type of judgement into the types of programs which are in use today.

The same type of problems exist for reliability based standards. For

such standards, the individual compliance decisions are deferred until the

entire system is checked, but the same types of judgements are needed. The

problem of feedback to determine why an unsatisfactory probability of failure

exists, or to determine a more economical design, are the same for this type

of standard. Since more computations and more components may be involved in

such a system check, the process of determining what alternatives to pursue

may be more complex.

3.2 Data Handling

The engineering process deals with the creation and the manipulation of

the data and information which describes and models the system being

engineered. The basic cause for many of the data handling problems is the

fact that the data is a resource which is independent of processes, but is

only of value to particular processes. Problems result from, and are related

to, this "corporate" nature of the data; the data logically "belongs" to the

design, not to an individual design process or designer which uses the data.

The data has traditionally been maintained by individuals and individual

processes. The data is treated in the manner which is most appropriate for

the individual involved, and the impacts of such data handling on others are

not considered.

There are a number of specific problems to be dealt with in data

handling. These include: (1) how to propagate the data through the design

process, (2) how to be sure the current, correct data is being used, (3) how

to represent the data, (4) how to integrate data and processes, and (5) how to

access data. Each of these problem areas are discussed separately, although

they are all interrelated.

3.2.1 Information Flow

Data is produced and modified by various processes. It is used

(consumed) by other processes. This data is the design, and it moves and

flows from one process to other processes which require the data. To

www.manaraa.com

33

integrate processes, it is necessary to integrate the data and provide the

mechanisms for the data to move from process to process. The other data

handling problems all result from the attempts to produce an integrated system

in which the information flows between processes. Capabilities must exist to

support and provide this information flow.

3.2.2 Consistency and Integrity

The data used in design should be correct and up-to-date. A major

problem in engineering is the performance of work based on the wrong or

incomplete data. This produces errors and unsatisfactory designs. In some

cases these errors are detected before the design work is completed; in other

cases after-the-fact changes must be made. The problems of consistency and

integrity deal witb: (1) who currently has the data, (2) who changed or

created the data, (3) is the data correct, (4) how to keep the data current,

and (5) what the change of a data item implies to other data. If the "owner"

of the data (the individual or process which is currently responsible for

maintaining the correct value of the data) is known, then it is possible to

access the data when it is needed by some other user or process. Knowing who

changed the data permits placement of responsibility (and blame), and permits

one to query the responsible individual to determine the rational used to

obtain the current data value.

The attributes correct and current are difficult to characterize. The

effects of incorrect or out-of-date data are known, but the problem is to

determine if the data is correct or incorrect. Since data is dependent on,

and derived from other data, a change implies that the derived data is

potentially wrong. An information flow capability is needed to determine what

data is affected by a change of some other data, and judgement is needed to

determine the effects of such a change (recomputing some data due to a change

in some other data item, every time a value changes, may not be required, and

may be very costly). Unfortunately, in current engineering software systems,

there are no mechanisms to attack these problems.

3.2.3 Data Representation

Data is usually associated with one major process, and this process

determines how the data is organized and stored — its representation. There

is both a logical and a physical representation of the data. Consider, for

example, nodal loads from finite element analysis. Logically, these consist

www.manaraa.com

34

of a force vector (direction and magnitude) and a location (node).

Physically, this may be represented by a set of magnitudes of every degree of

freedom component at every node stored as a vector of length equal to "Number

of Degrees of Freedom per Node" times "Number of Nodes." An alternative

representation is a data structure consisting of a node, direction, and

magnitude for every specified load component.

In conventional programming practice, once a representation is selected,

the access mechanisms for that representation are coded directly into

processing modules. Other processing modules (either new, or replacement

modules) will need the data at some future time. Their needs often will be

different from those of the existing processes, and the selected storage

representations (either logical or physical) are often not appropriate.

Consider the topology of a finite element mesh as an example. Various

elements are associated with various nodes in the mesh. Each element has a

list of the nodes upon which it is incident — the element incidences. The

information is often logically represented as a list of nodes associated with

each element. This is quite natural as the element matrices are often

produced on an element-by-element basis, and then assigned to the global

matrices through the incidence mappings. For a process such as stress

averaging, it is necessary to know what elements are incident on each node —

the nodal incidences. These two Bets of data are the inverses of each other.

Either can be determined dynamically from the other as needed, or an

alternative data representation can be created, and the data duplicated in

both locations. Selecting a single representation may require the repetitive

use of complex code to transform the data when needed. The alternative of

multiple representations is subject to problems of data consistency.

As more processes are involved, the selection of the appropriate

representation becomes more important to insure efficiency, to insure that all

potential accesses are possible, and to insure that the stored data is what is

really needed by all of the accessing processes. An incorrect representation

will restrict what can be done with the data. Mechanisms are needed to select

proper representations and to isolate the physical representations from the

logical representations.

Proper techniques for selecting data representations and constructing

data access procedures permit applications to deal with data in an effective

manner without requiring extensive, complex programming due to changes of

representation. Current data management techniques applied to engineering

software systems do not provide such capabilities.

www.manaraa.com

35

3.2.4 Process Integration

To integrate individual processes into a complete system the processes'

data must be integrated. The data can not always be in the proper

representation. Each process or subsystem will have its own desired or

required form. The data must be transformed or "mapped" between the various

forms as it flows between processes. Many attempts at integrating programs

address this problem. In manual usage, data is output from one program and

transcribed, by hand, to the form required for the next program.

The most common integration alternative is a tightly coupled "N x N"

system. In this scheme, each process has its own data storage and data

representations. The processes each communicate with all other processes,

with a data transformation occurring on any data communication path, as shown

in figure 3.1 .a. Such an integration is very complex. The number of mappings

grows combinatorially with the number of components. A change to one process

requires the modification of "N" mappings.

An alternative is to provide a single common representation. The data

may either be distributed and stored with the individual processes, or it may

be stored in a central database, as shown in figure 3.1.b and figure 3.I.e.

One transformation is needed between each process representation and the

common representation.

There are a number of problems with both alternatives. One of the most

basic, for which there is no simple or convenient solution, is missing data.

A process may need some data item which does not exist in a database, but

which is logically associated with, and should be produced by, some other

process. The process which should be responsible for creating the data may

compute the data item and use it within its own processing. The data is

computed by this process "on-the-fly" as a temporary quantity, but it is not

"exported" to any other processes, and it is not available for other

processes.

Another problem is the transformation of the data between

representations. The mapping may not be possible; additional nonexistent

data may be required to complete the transformation. Alternatively, the

mapping may be very complex, not a simple one-to-one transformation. Some

physical representations, such as the nodal loads example above, are

straightforward. The mappings involved in the topology representation are

much more complex. If multiple representations are present, how can it be

insured that the data is consistent in all representations? If the data is

changed in one location it must be changed in all locations.

www.manaraa.com

36

(a) N x N Mapping

Database

(b) N Mappings — Distributed

M&pping

(c) N Mappings — Centralized

Figure 3.1. Process Integration Configurations

www.manaraa.com

37

If multiple mappings exist, there are questions of completeness and

symmetry; can any data item be transformed from any one form to any other

form (is it possible to transform representation A to A', but not A' to A)?

In the centralized form, there is a problem of selecting an effective

common representation for the data. The chosen data representation must

support all required data accesses. There is also the problem of efficient

access. A single form usually implies a single access path. In a multi-user

environment, this is a potential bottleneck.

As with selecting a data representation for a single process, selecting

an integration scheme can have a significant influence over the remainder of

the system (the system design, performance, development, and maintenance).

Effective techniques are needed to address these issues.

3.2.5 Context and Access

Data represents a particular problem. Individual processing steps are

general engineering procedures, are independent of the particular problem, and

often are independent of the class of problem. Some data, such as

descriptions of standard components, is independent of any problem and may be

used by many processes. In applications, data is usually stored in a manner

which links the data to the particular problem being solved. Thus, if one has

a procedure which designs a beam in a single building, and a project involves

two or more buildings, an ambiguity exists (the context of which building in

the project is not considered in the data access mechanisms). There must be

some mechanisms for accessing the data and augmenting the context independent

process descriptions to obtain the correct data. The current approach of

building data access paths into programs defines the context in which the data

is used. A coupling between problem dependent data and generic processes

exists, and this coupling can not be changed without changing the program.

In current programming languages, this context coupling is accomplished

through explicit linkages, either through calls to data management routines m

which context dependent information is used to access data, or through the use

of subscripts (representing context) iu addressing data structures. Because

of the explicit linkages, the processes can not be used in any other context,

and they loose their value as generic procedures. A mechanism is needed to

permit the dynamic linking of the generic processes to specific problem

dependent data.

www.manaraa.com

38

3.3 Control

Control deals with the issues of presenting the engineering design

process in the form of algorithms. Two basic problems are present:

(1) determining the actual algorithms, and (2) presenting the algorithms to

the computer.

3.3.1 Design Algorithms

What are the algorithms for design? Design is a complex process, and

unlike analysis, no specific procedures for performing design exist. There is

a general procedure of selection, analysis, and evaluation, but beyond this

level, the design process is ill-defined and unstructured. Each engineering

firm has its own general procedures for attacking a project. Each individual

engineer has his own personal process for design. Design algorithms are not

taught, or explicitly available. They are acquired through experience and

through observations of how others design. They often consist of assumptions,

guesses, intuition, and implicit applications of analysis procedures and

standards.

Consider the design of a plate girder as an example. The engineer may

automatically assume an initial web thickness of 3/8", simply because he

previously designed a girder for a similar span and loading condition, and

that was the final result. To compute the remainder of the section, he may

assume an allowable steel stress of 24 KSI. In doing so, he i*: (1) assuming

ASTM A36 steel, (2) assuming that bending governs the design, (3) assuming a

compact section, (4) utilizing a provision of the AISC Specification which

states allowable stress in bending is 0.66 of the yield stress of the

material, and (5) utilizing the ASTM standard for A36 steel which provides a

yield stress value of 36 KSI. He is utilizing his prior experience along with

assumptions and implicit applications of standards.

Alternatively, consider the following quote from a structural design text

[GaylE72].

Shear may determine the design of beams which support heavy

concentrated loads near reaction points and of very short

(small values of L/d) beams uniformly loaded.

This presents a provisional rule. There is a degree of uncertainty in what

constitutes heavy, concentrated, near, and short. In design, the engineer is

continually dealing with such descriptions and processes, and is successful in

utilizing them to produce complete, detailed designs.

www.manaraa.com

39

In analysis, the details of the computations are simple, well-defined,

and generally lead to a direct set of processing flow paths. In desigu, the

paths are more complex, more interconnected, and it is often difficult to

determine how to select a given processing path from a number of alternatives.

Additionally, there is the problem of starting the design process. Usually

some initial guesses are required. The procedure commences at some point, it

proceeds iterativaly, and then is terminated when the design is judged

satisfactory by the engineer.

In an integrated design process, there are problems resulting from data

flow and timing. Some procedures require that certain data items be available

before they can proceed. As the number of procedures increases, the degree of

interconnection grows and can not be readily determined. Two conditions,

termed contention and race, are possible. In contention, process A requires

some information produced by process B, while process B is dependent on some

other data produced by process A. The processes deadlock in contention for

the original values of the data. Once the data is determined a race condition

results. Process A can proceed but will affect the results of process B which

will affect A, ... In manual processing, these types of conditions do not

occur. The engineer will obtain needed data to perform the computations, and

will delay determining the effects on other data until the process has

terminated. Additionally, he will recognize iterations, and will make

judgemental decisions regarding convergence, or if iterations are appropriate.

Engineering design is a loosely structured problem dealing in uncertainty

and requiring significant experience and judgement. Such judgement and

experience are difficult to codify. Conversion of design processes into

computer code is difficult, if not impossible, using current techniques.

3.3.2 Presenting the Algorithms

Once an algorithm has been defined, there remain the problems associated

with presenting the control processes to the computer. Simple procedures

consist of only equations to be evaluated. Support code must be added to

provide input, output, and resource control. As processes grow more complex,

simple equations are not sufficient. Simple mathematical expressions such as

[K]e - f v [B]T [D] [B] dv

can not be expressed directly and require at least several lines of code to

perform the integration, in addition to all the code needed to form the base

matrices (In FINITE, the size of a complete element stiffness module doing

www.manaraa.com

40

such a numerical integration ranges from 1000 to 3000 lines). As the

complexity and size of the problems grow, the memory resource limits of the

computer are reached. This necessitates more code to move data to and from

secondary storage. Soon the computational process "gets lost" in all the

support code associated with the details of managing the data and providing

the primitives for the computations.

One solution to this dilemma is to provide "packages" of code to perform

many of the common functions (i.e., disk I/O, memory allocation, matrix

manipulation, etc.). This results in code consisting of numerous calls to

subroutines. This approach allows the programmer to become more productive by

eliminating some detailed coding, but the original problem simply reappears at

a slightly higher level of abstraction. The complexity of the programs using

such schemes soon exceed the skills of the programmers. All their effort is

spent in trying to manage resources efficiently, and not to solve the real

problem.

Support-supervisory systems like ICES and POLO were developed to overcome

this problem. They provide a higher level language in which all control is

programmed. The support software provides data and memory management

functions so that the programmer need not be concerned with such details.

However, even with these systcaas for support, the program (in the higher level

language) often becomes lost in the supporting code, particularly when

manipulating complex data structures. The programmer loses sight of the real

problem.

The data and processing primitives are still at a low level when compared

to the complexity of the processes. As a result, the algorithms are difficult

to implement, with a great deal of the development effort applied to issues

other than the desired procedure. Such code is difficult to maintain, to

check, to modify, and to enhance. Alternatives to the explicit programming of

all the details of the algorithms are required.

3.4 Interfaces

As stated in section 2.2.1, interfaces are often neglected in engineering

software, even though they have a significant impact on productivity. There

are two basic problems to be resolved in providing the interfaces: (1) what

style of interfaces to provide, and (2) developing the software to support the

interfaces.

www.manaraa.com

41

3.4.1 Form and Style

There are a variety of forms and styles for interfaces. The objective is

to be able to communicate the maximum amount of information in a manner best

suited to the user. The interfaces should be flexible. The user should be

able to direct the input rather than having to respond in a predefined

sequence; the user should control the process, not be controlled by the

program. Similarly, for output, the user should be able to select the style

(tabular, graphical), content, and order of all data presented. Looking at

thousands of lines of output to select a few numbers is inefficient, tedious,

error prone, and nonproductive.

For input, the most common form currently used in engineering software is

fixed-form bulk input. This is the easiest for the programmer to provide (it

can be supported directly through programming language features), but is the

most restrictive for the user. The other extreme is natural language voice

input. Such input systems currently require dedicated computer facilities and

are state-of-the-art research. However, they do provide the fewest

restrictions; consequently they also provide the greatest possibility for

ambiguity. In between these two extremes are a variety of forms. Problem

oriented languages (POL's), menu driven graphical systems, and question and

answer systems are the most popular forms. At first glance, question and

answer systems appear to be useful and convenient for the infrequent user.

Basically, the user is prompted and lead through the input process. For

frequent users of a system, the prompting systems are boring, la addition to

the boredom, there are other serious drawbacks. The worst of these appears to

be that there are no user controlled mechanisms for backtracking and

correction of erroneous input. Menu systems are graphics oriented; the user

points to one of a set of possible alternatives. They are more flexible than

prompting systems, but the number of potential responses is limited to the

viewing area of the screen. POL's are the most flexible of the three. Users

communicate in a subset of natural language, with restricted syntax. The

vocabulary is tuned to the user and the problem domain, and the user has more

freedom to direct the process than with the other schemes.

The form of the interface is dependent upon the data requirements. For

input, the data may be either (1) processing and control requests, or

(2) problem and model descriptions. The latter are generally more voluminous

and require more complex input forms to reduce input requirements.

www.manaraa.com

42

Similar problems exist for output. Here the two major forms of output

are tabular and graphical. Tabular output is typically provided through

programming language features. As such, the user generally has little control

over content or order. Often there is no way to suppress unwanted portions of

the output. Graphical output is much more desirable and flexible. It

requires additional processing, but yields results which are more readily

interpreted by the user. However, for graphical output, it is difficult to

determine the manner in which to present the data. Thus, there is the need to

provide capabilities to change the presentation of resultB for the user. In

addition to these bulk output forms, there is the need to present status

information, messages, errors, etc.

Increased user productivity is possible through appropriate interfaces.

However, such interfaces are complex and require careful design to insure they

provide the necessary capabilities and are truly useful.

3.4.2 Techniques

Only the simplest interfaces can be implemented by facilities provided in

current programming languages. Development of interfaces is extremely complex

and requires the programmer to consider and resolve many issues such as device

dependency, terminal access procedures, and response criteria. To eliminate

these problems, a variety of software tools have been developed or proposed in

order to isolate many of these issues. The application interfaces are then

built using these support tools.

Support software is available for graphics [GSPC79] and input language

translation [RehaD79]. However, in both instances the tools provide only a

basic level of support. Development of the sophisticated interfaces needed by

the applications requires a significant effort. The primitives provided by

the various tools do eliminate much detailed programming, but the level of

support provided is such that a significant amount of complex, and often

repetitive, code is required.

For example, graphics systems provide only basic drawing primitives for

line segments, characters, and viewing transformations. Development of a

complete graphics facility for FINITE would require support software to permit

the programmer to handle more abstract concepts such as surface function plots

(contour plots) or arbitrary cutting planes. To produce a contour stress,

load, or deflection plot of an arbitrary cutting plane or surface of a

www.manaraa.com

43

structure requires a complex program, with most of the detail being associated

with producing proper line segments for display. An ability to handle the

more abstract quantities at the support level is required.

Current technology provides only a first level of software support.

There is a need to develop additional support which will allow system

developers to deal with the engineering nature of the applications directly,

without having to first translate all actions into device and basic operation

oriented algorithms. Additionally, there is a need to develop tools in other

areas such as tabular output and error handling; currently these functions

are being provided in a totally ad hoc manner for most engineering

applications. A complete set of tools and techniques for interfaces would

enable programmers to provide more effective interfaces with significantly

less development effort.

3.5 Computer Technology Base

The computer field continues to undergo a period of rapid technological

development. There is a continuing revolution in hardware, languages, and

systems. The effects of the ongoing computer revolution in these areas is

presented below. The basic problems in all these areas arise from the ongoing

changes.

It is necessary to configure engineering software systems so that they

are adaptable, or, due to the rapid changes, they may be outdated before they

are operational. The problem with all three aspects is to know what to

select, and how to be prepared for future changes. Complete computer software

systems are extremely costly to develop. The costs of constantly redeveloping

software due to technological changes in the supporting systems is not

acceptable.

One would like to ignore as many of the isBues of selecting hardware,

languages, and systems as possible. In fact, most of these issues should not

be of concern to the end-users or to the application program developers.

However, to achieve this isolation, these issues must be dealt with in the

system software. Unfortunately, with current software technology, there are

no formal mechanisms to deal with these problems and to minimize the effects

of change.

www.manaraa.com

44

3.5.1 Hardware

Semiconductor technology has caused the most dramatic changes in computer

technology. The largest hardware systems of less than twenty years ago cost

over a million dollars and occupied a room. Today the same processing

capability is available on a single chip, costing less than ten dollars. A

complete microprocessor system requires only a few chips, sits on a table top,

and costs only a few thousand dollars. Ou the other end of the scale, there

has been the introduction of the super computer, machines with extreme speed,

currently approaching a billion operations per second. Additionally, there

have been continuing advances in peripherals. The end is not in sight;

prices continue to fall and the capacity of a single chip continues to

increase.

The future of hardware to support engineering software is unforeseeable.

Engineering software must be efficient and portable, even though the nature of

hardware is contradictory (incompatibilities and inconsistencies exist between

various hardware manufacturers and these limit portability). The lack of

concern for portability and efficiency issues has plagued prior systems.

Effective, adaptable, long-lived software must be conceived and designed to

deal with the indeterminable nature of the host hardware.

3.5.2 Languages

New computer languages continue to be introduced. Large numbers of

languages are continually developed for research, experimentation, and

teaching purposes. The majority of these do not become widely accepted, due

to resistance to change from users, and due to their lack of portability,

distribution, and support. The new languages provide a variety of ideas and

techniques, and one wonders how long the current mainstays, FORTRAN and COBOL,

will continue to flourish. Possibly the most significant change in this area

is just emerging with the introduction of Ada [DoD80] by the U.S. Department

of Defense [DoD].

The choice of a language can have a significant effect on the ease of

development and reliability of software. Engineering programming currently

implies FORTRAN. Should programming in FORTRAN continue with the acceptance

of its deficiencies (particularly with respect of data structuring facilities)

in exchange for language acceptance and portability, or should there be a

switch to a new language and risk a premature end of life of the application

www.manaraa.com

45

programs due to the death of, or lack of support of, or unavailabil i ty of the

base language? The benefits of any al ternat ive language must be weighed

against the potential cos t s .

3.5.3 Systems

Original engineering programs were designed for operation in the batch

environment, the only alternative. Then came the addition of time-sharing. A

number of other choices now exist, including: transaction processing,

networking, and distributed systems (these are described in more detail in the

glossary, section 5). On-line, interactive computer utilization for

engineering is essential. The choice between centralized, networked, and

distributed systems must be made. Distributing data and processing leads to

problems of interconnections and access. Centralized systems have a potential

for bottlenecks. The problem with selecting a system form is similar to those

described above; what is the proper technology to select to provide the best

support for engineering applications.

www.manaraa.com

46

4. TECHNIQUES FOR ENGINEERING SOFTWARE SYSTEMS

There are a number of techniques which appear to have promise in

developing advanced engineering software systems. These techniques

potentially provide a means to addxess and solve many of the problems

presented in chapter 3. Five techniques which appear to be most valuable are:

(1) relational database management systems, (2) use of context, (3) knowledge

based artificial intelligence systems, (4) virtual computer models, and

(5) alternative programming languages. Each of these will be discussed

separately: with respect to the technique, the problems which are addressed

by the technique, and the potential advantages and disadvantages of using the

technique. Due to the very complex nature of some of these areas, more

detailed background information is provided in the appendices.

4.1 Relational Database Management Systems

Database management systems (DBMS) are used to fulfill a variety of the

data handling needs of software systems, and allow the system's developer to

concern himself with the engineering problem to be solved without dealing with

all the details of data storage, data representation, and data manipulation.

Database management systems provide a software package which is the interface

between the applications program and the physical storage system. This

software allows the programmer to deal with data on an abstract logical level,

rather than at a physical level. Relational database management systems are

the most recent development in this field. Additional information on database

management is presented in appendix B.

4.1.1 Background

In the early sixties, database management systems evolved from report

generators and disk management systems [FryJ76]. The database management

systems were introduced to provide mechanisms to reduce program complexity and

development effort. Attempts to integrate programs had lead to difficulties

due to data representation and storage. Database systems were introduced to

eliminate these difficulties. Three distinct types of database management

systems have evolved: (1) Hierarchical [TricD76], (2) Network (CODASYL)

[TaylR76], and (3) Relational [ChamD76, MichA76, KimW79l. A variety of

www.manaraa.com

47

implementations now exist, but most are oriented towards business

applications. Within engineering, the applications often had no database

support. If some type of support was present, it was usually ad hoc disk

management routines, or a special purpose engineering hierarchical database

manager.

The use of a database management system helps, but it does not eliminate

all of the problems encountered, and it does introduce some new problems which

must be resolved. The relational database model is the latest and most

advanced technology available. It appears to provide a number of features

which reduce data handling problems.

4.1.2 Problems Addressed

Database management systems are used to reduce the magnitude of the data

handling problems associated with process integration and data representation.

All of the information in a database is creaced, accessed, and maintained by a

single system. As such, a data representation which is best suited to all

applications can be selected and used. No application "owns" the data, but

all access it from the database. The database manager allows each application

to have its own "view" of the data, permitting the programmer to work with a

subset of the data without knowing all the representational details of all of

the data. This feature, along with a se^ of common data operators and support

functions, such as concurrent access control, permits the applications to be

data independent; details of data management is the sole responsibility of

the database management system.

The hierarchical and network systems both have two distinct levels for

describing the data. The lowest level is the "data mapping level," where the

data structures of the databases are described in terms of their physical

organization and structure. The higher level is the "data definition level,"

which defines the various components of the data structures within the

database and the relations between the components. The user (programmer)

deals only with this higher, "logical level." The data is stored in logical

records, and there are certain logical interrelations between data items and

records. These relationships are represented in the logical organization and

representation of the data in the database. To access or change the data, the

user must explicitly deal with all aspects of the data representation:

(1) content of records and data structures, (2) linkage (hierarchies,

networks, pointers, etc.) between data structures, and (3) order of records

www.manaraa.com

48

within data structures. As a result, the applications become tied to the

"representational detail" of the database, and can not deal with the data in

an effective manner. The applications are cluttered with code to access and

manipulate the database, not the data in the database. The database

organization can not be changed because the information about access is built

into the accessing programs. No matter what the programmer tries to do, he is

seldom dealing with the actual data. Rather, he is always explicitly

operating on the logical organization of fields, records, and data structures,

and is specifying all of the details of all representational manipulations.

Such database systems are "representational^ addressed." Although the

database eliminates much of the detailed programming and provides a common

data representation as a basis for integrating applications, the data handling

problems (as described in section 3.2) are not all resolved. Relational

database management systems attempt to solve the remaining problems by

providing another level of data independence.

4.1.3 Advantages

The objective and advantage of the relational approach ib the attempt to

eliminate this last level of data representation dependence described above.

In the relational model, the user deals only with the data, not its

representation. The database is "content addressed." There is a logical

content of data groups. The user can request any information in any manner he

desires (by specifying the content of the requested data), and is presented

with the data in the form of a relation. The access interface to the data,

and the form of the data, is independent of the data organization and

representation. The physical database structure is unknown to the user. The

selection of storage and access mechanisms can be determined by the database

management system. The definition of different views of the data can be

constructed in a hierarchical layered fashion (relations defined in terms of

other relations), allowing the user to treat the data in the manner he

desires, independent of the form selected for the database.

The following is an example of the data management statements used with

the POLO hierarchical database manager to access the element incidences from

the mathematical model data structures in a finite element system. The

example is based on the data structures used in FINITE (the statements

correspond to the actual data structures used in FINITE, and these data

structures were chosen for efficiency in a particular type of access, and the

www.manaraa.com

49

example depicts the bias in data structure representation). A conventional

procedural language embedded data manager would require several more lines of

code than that required by the higher level data management commands supported

by POLO. The first two commands deal only with the data representation; the

actual data is not accessed until the third command.

GETJ/ECTOR (INCIDENCEJ/ECTOR,

MATHEMATICAL_MODEL (ELEMENTS, STRUCTUREJMAME,

INCIDENCE_POINTERS, ELEMENT_NUMBER)),

GET_P0SITI0N (INCIDENCE_PQSITION,

MATHEMATICAL_MODEL (ELEMENTS, STRUCTURE_NAME,

INCIDENCE_POINTERS, ELEMENT_NUMBER)),

GET_INCIDENCE (MATHEMATICALJ10DEL (ELEMENTS, STRUCTURE_NAME,

INCIDENCES, INCIDENCEJ/ECTOR,

INCIDENCE_POSITION))

For a relational database management system, the request which corresponds to

the example is shown below. This request is independent of data organization

and structure.

SELECT INCIDENCES

FROM MATHEMATICALJ10DEL

WHERE STRUCTURE = STRUCTURE_NAME

AND ELEMENT - ELEMENT_NUMBER

There are four distinct advantages of the relational approach:

O) simplicity, (2) data independence, (3) symmetry, and (4) theoretical

foundation [ChamD76].

Simplicity: The user has only the single relational tuple data

structure to deal with. All accesses are independent of

storage organization, and the user deals only with data tuples,

not access mechanisms or access paths.

Data Independence: The details of the storage structure are

unknown to the user. Thus, the storage structure can be

changed without affecting any applications. Anyone can access

any data, simply by knowing that the data is present in the

database. Applications are independent of the details of the

data organization.

www.manaraa.com

50

Symmetry: If the data is stored in some record oriented manner,

then there must be a traversal of the records and the links to

access the data. For certain requests, which do not map

directly onto the data structure, complex programming is needed

to obtain the data (e.g., going from element incidences to

nodal incidences as described in section 3.2.3). This

complexity limits the accessibility of the data and may imply

serious performance problems. In the relational approach,

since access mechanicms end data organization are hidden, any

request can be formulated directly, and all requests are

handled equally. The database is "symmetric" with respect to

data access.

Theoretical Foundation: The relational model is based on the

mathematical theories of relations and predicate calculus.

The first three advantages address the data representation dependence problems

of prior database management systems. The last provides a formal basis for

the concepts utilized in the relational model.

4.1.4 Disadvantages

Relational database models are a new and rather untested technology, with

a number of questions concerning the viability of such systems. There are no

very large databases which have been developed using such systems, so

questions of effectiveness in large applications have been raised. Most

relational systems have been developed to do research in the design and use of

such systems. Major implementations are just being released [IBM81a, IBM81b].

Thus, there is no large body of experience of use in the production

environment as there has been with the other database models.

There are also some questions concerning the operational speed and

efficiency of relational systems. The majority of the work of the database

administrator in using nonrelational types of database systems has the

objective of determining the data representations and access paths which will

be most appropriate for all users. The optimality criteria which are used in

the selection of the data organization are: (1) speed of access, (2) minimum

storage transfers, and (3) minimum storage space. Since the database

management system has control over selecting the physical representations and

access paths in the relational model, the system may not select the

appropriate representation or access mechanisms, and the result may be

www.manaraa.com

51

unacceptable performance. It is hoped that the magnitude of the optimal data

representation and access path selection problem will be such that, for large

systems, the machine can produce a solution which has overall better

performance than one developed by a database administrator. For any

individual access, a "hand tuned" system may be better, but for a very large

system, the number of accesses will become so large that hand coding and hand

tuning can not be considered, and on the average, the database management

system will do a better job. (this is similar to the argument for use of

higher level programming languages as opposed to assembler languages).

Perhaps the most serious question involving the use of the relational

model for engineering applications is the question of available data

primitives. Relational systems have been developed for information retrieval

and business applications, and the data primitives are usually only names,

integers, booleans, and character strings. In fact, some relational systems

do not support real numbers. Primitive data types such as reals, integers,

characters, and booleans, and other engineering data types and data primitives

such as vectors, matrices, tensors, etc., are needed in engineering

applications (such higher level data types are not currently supported by

standard database management systems). The lack of such data types will be

restrictive, making it difficult to develop programs which require such data

types.

4.2 Context and Scope

Context and scope are not techniques, but rather, they are concepts.

They are based on the methodology used to solve engineering problems, and are

dealt with in an ad hoc manner in most applications. The formalization of the

concepts appears to be of value in solving some of the data handling problems.

4.2.1 Problems Addressed

Analytic engineering processes and standards are usually context

independent (in some fields such as nuclear power plants an individual

standard may be developed for a single project). As stated in section 3.1.1

and 3.2.5, processes and standards can be applied to any problem or project by

using the appropriate data. Their application requires the addition of

context. In applications, this context information is presented in the form

of data subscripts. In programming languages, the various data items needed

www.manaraa.com

52

by the processes are stored and grouped in data structures which are addressed

by subscripts ("subscripted") to indicate what part of the data is needed. In

access to databases, a similar method of subscripting the data structures is

used to obtain the correct information for the processes. This subscripting

is explicitly built into current application programs. Thus, the application

must have context information scattered throughout the processes. Any change

of context requires recoding the processes. The concept of context is to

separate the context information from all processes, just to use the generic

processes. Context information would then be declared externally to the

processes. The data management system can be extended to include a formal

context system, and the database manager would augment data references with

context information to obtain the correct data.

The concept of scope is also based on current procedures, but scope is

more abstract. The data which is used in any processing step is dependent

upon the type of process. In design, the same type of information is needed

in both the detailed and preliminary design phases. Approximate values,

derived from heuristics, are acceptable in the preliminary phase, but exact

values are required in final computations. In analysis, many different types

of computational processes are available which produce results under different

assumptions. In some cases the results from one type of analysis may be

acceptable in other situations (e.g., the use of results from a nonlinear

analysis of a structure in place of results from a linear analysis). For many

processes, different representations of the same data items are acceptable at

different times. Consider a beam in a building. For structural analysis of

the frame it is considered to be a line connecting two points, and the overall

length is the only dimension of major concern. Once the beam is detailed, all

of its dimensions, and those of the connections, become significant.

The concept of scope is to permit the application developer to state,

external to the process, the scope and range of data that are acceptable to

the process. Then the data management system can resolve all the data

requests and provide the appropriate data, to the level required by the

processes.

4.2.2 Advantages

The concepts of context and scope have advantages in all data handling

situations. The complex context information present in all data references

within a process will be reduced or eliminated. Processes will become generic

www.manaraa.com

53

and can be used in any suitable context. Context could be declared globally,

and hierarchically. As projects become more complex, higher levels of context

can be added, and none of the applications will be affected.

Standards are an example of processes which are context independent. The

application of the concept of context will permit standards to be used

directly in design systems without dealing with the issue of explicit database

linkages. Completely generic standards processing could be developed,

Scope has similar benefits of simplicity and process and data

representational independence. The details of determining the acceptable

types of data will be eliminated from the details of the process. When

combined with a data flow architecture, scope -ra1 be used to control the

automatic computation of data. This will cause the more detailed and exact

computations to be deferred until explicitly required, but it will permit

these mora detailed results to be used in place of other results if they are

available.

The following is an example of a conventional relational database access

used to obtain stresses in a finite element system. The request will

determine the principal element stresses for all elements of type "CST," in a

structure called "BEAM," analyzed as a linear system, and subjected to loading

condition "UNIFORM." The structure is part of one design alternative

("DESIGN_A").

SELECT PRINCIPALJSTRESSES

FROM MATHEMATICAL_RESULTS

WHERE STRUCTURE - BEAM

AND LOADING » UNIFORM

AND ANALYSIS = LINEAR

AND ALTERNATIVE - DESIGN_A

AND ELEMENTS

SELECT ELEMENTS

FROM MATHEMATICALJ10DEL

WHERE STRUCTURE - BEAM

WHERE ALTERNATIVE - DESIGN_A

AND TYPE - CST

www.manaraa.com

54

Using context and scope, the request might be recoded as shown below. The

three context and one scope statements (which are declared independently of

the actual data access) are:

SCOPE ANALYSIS - LINEAR

CONTEXT STRUCTURE - BEAM

AND LOADING - UNIFORM

AND ALTERNATIVE - DESIGN_A

The data request then becomes:

SELECT PRINCIPAL_STRESSES

FROM MATHEMATICAL_RESULTS

WHERE ELEMENTS -

SELECT ELEMENTS

FROM MATHEMATICAL_MODEL

WHERE TYPE - CST

4.2.3 Disadvantages

Context and scope are simply concepts at this time. They are based on

techniques currently used in engineering, but these concepts have never been

implemented and used in engineering software. Appropriate formalisms for

using the concepts must be developed, and they must be implemented and tested

to determine their practicality.

4.3 Knowledge Baaed Systems

Knowledge based systems are one of several types of artificial

intelligence systems used to solve ill-structured problems. Engineering

design is a typical ill-structured problem where many procedures are based on

rules-of-thumb, experience, and intuition. Knowledge based systems provide a

technique for describing such problem solving activity to the computer. A

more complete description of artificial intelligence and knowledge based

systems is presented in appendix C.

www.manaraa.com

55

4.3.1 Background

Two basic types of artificial intelligence systems currently exist: weak

solvers, and strong solvers [ErmaL80]. The original work in the area was in

the development of weak solvers. Production systems are typical weak solvers.

They have no built-in infonaation about the problem being solved, and are

composed of a number of simple premise-action ruins. The production system

can accept any set of rules, and will attempt to solve the problem by

transforming a problem description from one state to another state through the

use of the rules (theorem proving being a typical example). Such systems

attempt generality, but are slow and unresponsive.

Due to the problems with the weak solvers, the strong solvers, which

contain specific domain dependent knowledge were developed. In the strong

solvers, the problem solving rules are more complex, and the problem solving

strategies, which are built into the system, are tuned to the application

being performed. DENDRAL [BuchB69], MYCIN [ShorE76], and Hearsay-II [ErmaL80]

are all examples of knowledge based systems; each of these systems being

built on the experience gained from the prior systems.

The knowledge in a knowledge based system consists of a body of rules,

provided by experts from the application domain. Each rule consists of a

premise and an action to be taken when the premise is found to be true. The

rules are based on, and operate on, the current problem state, as represented

by various data items. A controller monitors the data space, and determines

when rules are to be invoked. From the current set of applicable rules, the

controller will select those to be applied (based on problem knowledge), and

invoke the processing of the corresponding actions. The process of rule

utilization continues until some particular goal state is reached, or until

the system determines that the goal is unreachable.

The knowledge rules are data for the controller. Thus, the problem

solving data is not part of the system. The manner in which the problem is

solved is determined dynamically by the controller. No explicit processing

steps exist, and the problem solving strategy can be readily changed and tuned

to different problems simply by changing the rules. Advanced capabilities

permit the systems to learn and tune themselves through experience.

www.manaraa.com

56

4.3.2 Problems Addressed

Much of the engineering process is ill-structured. Knowledge based

systems can be applied in many areas, and they appear to provide a valuable

technique for dealing with such ill-structuring. Specific areas where

knowledge based systems appear most promising are: (1) standards processing

and access, and (2) representing design procedures,

Standards: Computer processing of standards has been performed by

using decision table based systems. Decision tables are a

formalism for representing a variety of conditions and actions

in a compact tabular form which can be readily processed.

Decision tables are identical in nature to the rules and

knowledge sources of knowledge based systems; only a different

representational form is used. Thus, a standards processing

system can be considered to be a form of a knowledge based

system.

One of the most difficult aspects of standards use is

that of accessing the correct provisions. Previous decision

tables based systems have used "Switching Tables" as one method

to control access [FenvS69, GoelS71]. Again, these decision

tables fit into the premise-action structure of knowledge based

systems. Current standards processing systems use only the

standards themselves, with no additional data or rules which

originate externally to the standard. Actual engineering

practice augments the standard with additional information to

gain access to, and to use, the various provisions of the

standard. Engineers do not explicitly use all of a standard,

exhaustively checking all provisions, as is the case in some

computer based systems. Additional rules in an expert system,

based on engineering practice, could allow the system to

perform in a manner similar to the engineer. These additional

rules would describe which provisions are applicable in any

particular state. When necessary, such rules could be

suppressed, and exhaustive, rigorous compliance checking could

be performed. Techniques which are similar in nature to those

currently used can provide an intelligent approach to use of

standards in engineering computer systems.

www.manaraa.com

57

Design Procedures: Design procedures do not exist as explicit

algorithms, but rather they are a body of knowledge which is

maintained by various engineers, each having different parts of

the knowledge. Engineering activity relies on the cooperation

of these individuals to pool their knowledge and experience to

determine the procedure to design an engineered system. The

information which constitutes the design process is processable

by humans, but its structure and content are not explicitly

known. Parts of it are represented by language in texts.

Other parts are based on experience and are transmitted between

individuals. All of the knowledge and design procedures are

based on determining that the design, or the design process, is

in a given state, and in this state certain conditions are true

which cause the engineer to conclude that some action may be

appropriate. This recognition of state and application of

action is exactly what a knowledge based system does. Once the

various rules have been formulated by the practicing engineer,

a knowledge based system may be used to process these rules.

The resulting system will solve the ill-structured design tasks

in a manner similar to an engineer.

4.3.3 Advantages

The basic advantage of the knowledge based systems is that they provide a

mechanism to address ill-structured problem solving tasks. The structure of

such systems provides a number of other benefits as described below.

The knowledge based systems are flexible, and are not tightly coupled to

the problem solving applications. The knowledge in such systems is expressed

as data to the problem solver. This knowledge exists as a body of

information, and it is not built into the system. Rules need not be

explicitly linked to each other, and data accesses need not be explicitly

coded. The various rules can readily be chauged to tune the system to the

problem solving task, and new knowledge and processes can be added without

impacting existing components. The knowledge based systems can even be made

to learn from experience, and to augment rules automatically.

The system can determine how to solve the problem, and the developer need

not be concerned with all the details of potential interactions and conflicts

between processing steps. A knowledge based system will determine what to do,

www.manaraa.com

58

and will report on difficulties encountered during problem solving. Such

systems can explain what they are doing, and why they are performing certain

actions. Thus, the engineer can examine the workings of the application and

determine when it is failing, or when modifications to the system's problem

solving behavior are needed.

This flexibility is very important. Appropriate rules for design are

unknown, and experience will be needed to develop systems which are usable and

perform at the level of expert engineers. A system which requires extensive

reworking when changes are required would not be responsive.

The MYCIN model [ShorE76] has been used for engineering applications. In

one direct application [MeloR78], the medical consultant was changed to a

finite element modeling consultant, simply by changing the knowledge rules.

This "consultant" is designed to assist an engineer in determining the most

appropriate modeling scheme for a nonlinear finite element problem.

Unfortunately, the presentation does not show the power of the system. The

other example is an extension of the model into component design, with the

ability for the system to learn through experience [LatoJ77]. Thus, the

technique does show promise in solving the ill-structured engineering design

problem.

The following is an example of how a knowledge based system can be

applied to standards processing (syntax and style based on MYCIN). The

decision table representation of the tension stress provision described in

section 3.1.1 is:

DECISION TABLE 1.5.1.1

THREADED PART

PIN-CONNECTED

USE TABLE 1.5.2.1

(ft - P/Aa) < (

(ft - P/A) < (

(ft » P/AJJ) < (

•

Ft
Ft
Ft

B

a

B

0.45Fy

o.60Fy

0.50FU

)

)

)

T - -

- T F

*

*

*

*

www.manaraa.com

59

The knowledge based form of the decision table requires a single parameter to

be defined (additional numeric data items will be required for the actual

usage of the rule). The value of the parameter will be used to select the

proper rule, and is defined as:

TENSIONJteMBER: <TENSI0NJ1EMBER is the type of tension member>

EXPECT: (ONE OF TYPES: (THREADED_PART

PIN-CONNECTED SIMPLEJTENSION))

LOOKAHEAD: (RULE_1.5.1.1.A RULE_1.5.1.1.B RULE_1.5.1.1.C)

PROMPT: (Enter type of *:)

TRANS: (THE TYPE OF *:)

The decision table is represented as three rules. In this example, there is a

one-to-one correspondence of the rules and the columns of the decision table.

RULE_1.5.1.1.A

IF: 1) THE TYPE OF TENSI0NJ1EMBER IS THREADED_PART

THEN: THEN USE TABLE 1.5.2.1

RULE_1.5.1.1.B

IF: 1) THE TYPE OF TENSION_MEMBER IS PIN-CONNECTED

THEN: (ft = P/An) < (Ft - 0.45Fy)

RULE_1.5.1.1.C

IF: 1) THE TYPE OF TENSION_MEMBER IS SIMPLEJTENSION

THEN: (ft - P/A) < (Ft - 0.60Fy)

AND: (ft - P/An) < (Ft - 0.50FU)

4.3.4 Disadvantages

There are two serious questions associated with the application of

knowledge based systems: (1) speed, and (2) development of knowledge sources.

Speed: Computers are fast when performing arithmetic computations

because the primitive operators (addition, multiplication,

etc.) are built into the hardware. It is questionable if a

computer which was programmed to perform arithmetic in the

manner of a human would be as fast as a human; the primitives

are wrong. The cognitive processes present in design may

www.manaraa.com

60

require excessive time when performed by a classic computer

designed for arithmetic operations. Thus, with respect to

design, the computer based system must be faster than the

engineer or provide a number of benefits in order to be

successful. If it is not faster, no advantages are gained.

Without significant benefits, simply providing all of the base

components, and letting the engineer provide all of the

expertise and control to guide the problem solving behavior

would be appropriate.

Knowledge Sources: A knowledge based system requires knowledge and

rules. Someone must develop these rules, and then test them to

determine if the system performs in an acceptable manner in a

variety of situations. This task will require constant

monitoring of the system and upgrading of its capabilities.

Such tasks can be performed only by human experts, those with

the judgement and experience to determine if the computer is

performing as expected, and those who know what to do when it

is not performing as desired. There has traditionally been a

reluctance on the part of senior experts to handle such

details, and they are usually relegated to junior personnel.

For a knowledge based system to be acceptable, expert knowledge

must come from, and be maintained by experts.

4.4 Virtual Machines

The concept of a virtual machine is to provide, via software, a

computational environment in which the users of the virtual machine appear to

be using a dedicated piece of hardware [CanoM80, GrovL80]. The configuration

and capabilities needed in a computer can be designed and implemented using

software on an existing system. The capabilities present in the virtual

machine may not exist in any real system. All application programs are

written and execute on the virtual computer which provides the resources and

features not present in the host configuration.

www.manaraa.com

61

4.4.1 Background

Virtual machines were created to provide computing environments which

were not available on existing hardware. One of the first uses was in

providing upward compatibility across new hardware systems. Introduction of

new hardware invalidated many programs which were written in assembler

language for the older machines. The costs of rewriting these programs, and

the time involved, presented difficulties in maintaining the ongoing

operations of facilities. The alternative to rewriting programs was to create

an emulator for the old hardware running on the new hardware, The emulator (a

virtual machine) would then execute the old programs directly, using the new

hardware. Thus, only one program needed to be written, and conversions could

proceed without affecting day-to-day operations.

The virtual machine concept has been extended in recent years, IBM has

introduced a complete virtual computer system which is used to configure a

proposed hardware system as a program running on some existing hardware

configuration [CanoM80]. With the inclusion of all the details of timing and

I/O transfers, a proposed system can be exercised and tested for performance

evaluation without the expense of configuring a real system.

An identical approach is used to provide a variety of single or multi­

user computer configurations operating on a single real machine. In this

manner, each user has what appears to be a complete computer system for his

use. He is operating on a multi-user system, but is never concerned with the

other users. In fact, it is possible for him to execute the virtual computer

system software, and provide a number of virtual computers, each running on

his own virtual system. The base virtual computer system is used to provide

the necessary multi-user support, and the applications can execute on the

individual virtual machines without knowledge of the underlying support.

Engineering support-supervisory systems such as POLO [DoddR80] an DVM

[SchrE79] can be considered to be virtual computers. They provide a computing

environment which does not exist as a physical system, but a computer system

which would be desirable for performing engineering applications. Such

systems consist of a controller and a set of operators. These are analogous

to the central processor on a real system. However, the basic virtual machine

operators are better suited to the engineering applications. The engineering

oriented operators permit programs to be written at a higher level than if

they were written for a real machine. Virtual machines also include a memory

subsystem, and disk or secondary storage systems. The software for such a

www.manaraa.com

62

virtual machine consists of a monitor or operating system and a set of

languages and their compilers. In addition to all these basic system

components, the virtual machine model provided by POLO includes a number of

features not commonly found in real systems. These include components

logically equivalent to: (1) a writable control store which allows the

applications system implementor to add new instructions to the basic

repertoire, and (2) a virtual back-end database machine along with a data

definition language and compiler which are used to provide database support

for applications.

4.4.2 Problems Addressed

A major problem in designing any piece of software is configuring the set

of basic components and the overall system organization and structure so that

the software is flexible and performs the desired tasks well. The virtual

machine provides a software structure model to address this problem; it

provides the basis for the software configuration. A basic machine model can

be used to provide the structure and the complete set of components with the

features and capabilities needed to develop application software.

Applications are designed, developed, and programmed for the virtual machine.

The existence of the virtual machine to provide support may yield better

structured software than ad hoc approaches.

4.4.3 Advantages

The basic advantage of the virtual machine approach to software

development is that it provides a sound, structured basis for the development

of software systems. Classic computer architectures have been used for over

thirty years, and although there are questions about their effectiveness

[BackJ78b], the basic von Neumann architecture is still used. By developing

virtual machines which are well suited to engineering applications based on

such a software model, all of the experience, research, and development which

has gone into computer systems development can be utilized in developing the

basic system software.

The use of virtual machine models results in clean programs. The

applications deal only with high level concepts provided by the virtual

machine. Applications are developed using a level of abstraction which is

www.manaraa.com

63

closer to the real problem. Thus, they do not need to deal with a variety of

details which clutter programs written in nonvirtual environments, and which

make development and maintenance more complex.

By separating various functions into separate machine models, a

significant portion of the complexity is eliminated, and each virtual machine

can be tailored to a specific task. Formal models for machine interfaces and

communications can be applied to these virtual machines to lick the

subsystems. Many of the complex issues involved with resource management, and

other details such as providing multi-user support, can be relegated to the

system level, and are not apparent to the application developer. This

approach has proven to be of great value in developing applications such as

FINITE.

4.4.4 Disadvantages

Such systems can become very complex. The software used to implement a

virtual machine is not simple, and its development may present difficulties.

Additionally, there is the potential problem of speed when using such an

approach. The use of a complete virtual machine operating at the same level

as the host machine is several times slower than the host hardware, due to

system overhead (interpretatively simulating any operator such as

multiplication or addition is much slower than letting the hardware do it

directly). To be effective, the operators in the virtual machine must be

powerful enough so that the system overhead becomes negligible.

4.5 Languages

Is FORTRAN the first, last and only scientific programming language? The

question has been posed recently. FORTRAN is the de facto standard for

development of engineering software. Other programming languages may provide

alternative features and capabilities, but they are generally ignored by

engineering users.

4.5.1 Background

There are hundreds of programming languages. Of these, FORTRAN and COBOL

are the industry standards for scientific and business programming. Their

popularity is due to their widespread availability and standardization. This

is due to government selection of these two languages as requirements for

www.manaraa.com

64

government computer systems. Both languages are quite old, dating back to the

late fifties. Through recent years, COBOL has been updated and extensive

database facilities have been added (CODASYL). FORTRAN remained unchanged for

over ten years, but now is undergoing a number of changes, and future language

additions and modifications may change the overall flavor of the language.

As a result of the lack of facilities in FORTRAN, COBOL, and other

languages (their designs were not based on any particular set of principles,

but they were developed to fit specific needs and hardware configurations

[BackJ78a, SammJ78]), a number of alternatives have been developed. A few of

the more common are ALGOL, ALGOL 68, PL/I, APL, LISP, Pascal, and Ada. These

are described in the glossary (section 3). These languages all have a large

user community, and are available on a variety of computer systems. In

addition, there are numerous other languages, each developed to meet a

particular set of perceived needs for some particular problem domain. Many of

these languages have a number of interesting features. However, most are not

well supported, are noL portable, and have only a limited user community —

the development team.

4.5.2 Problems Addressed

Software development is extremely complex and costly. Many of the

problems of presenting the algorithms to the machine are due to the nature of

the programming languages, due to their lack of abstraction. Alternative

languages provide features to simplify program development and yield better

programs.

4.5.3 Advantages

Each of the var ious languages has i t s own advantages. In gene ra l , each

of the languages has some p a r t i c u l a r se t of fea tures which y ie ld b e t t e r

programs, with less development e f fo r t , by e l iminat ing some d e t a i l s of program

development. All of the newer languages have improved cont ro l and da ta

s t r uc tu r i ng f e a t u r e s . Other fea tures which some of these languages provide

and which might be bene f i c i a l include: (1) operator overloading, (2) language

e x t e n s i b i l i t y , (3) language environments, and (4) data flow a r c h i t e c t u r e s .

These var ious fea tures a re described in the glossary (sec t ion 4) . Each of the

fea tures e l iminates some of the d e t a i l s of program development and coding.

They permit the programmers to be more productive and to deal with more

www.manaraa.com

65

abstract concepts, concepts which are closer to the problem being

"computerized," rather than dealing with the detailed presentation of the

machine implementation of the process. Resulting programs are more flexible,

more adaptable, and more reliable.

4.5.4 Disadvantages

The major disadvantages of any new computer language are the questions

regarding its acceptance and portability. The selection of a programming

language must deal with the realities of the user community. If languages are

not accepted, or if the programs can not be moved, programs may die, or the

extent of their use may be severely limited. Prior large engineering software

systems have been long-lived, and portable, well supported programming

languages are necessary to develop, maintain, and support such software.

Some languages lack particular facilities which can seriously impede

their use for particular applications. For example, in current languages,

FORTRAN lacks data structuring facilities, and Pascal lacks I/O and separate

compilation facilities. The effort spent to overcome these deficiencies may

outweigh any potential benefits.

In other cases, the fact that the languages are new, and have not had

extensive use in large systems development, may mean that there are questions

regarding their applicability to the production environment. Large-scale

software development is quite different than other types of programming

(program complexity grows exponentially with program size), and such software

is often operating at the limits of the language. In new languages without

extensive large-scale use, a potential for problems exists, and this tends to

discourage the use of the languages.

www.manaraa.com

66

5. A COMPUTER AIDED ENGINEERING SOFTWARE ENVIRONMENT

In chapter 4, a variety of techniques which can assist in developing

engineering software, and which will overcome many of the current problems

were discussed. These techniques are not directly applicable for use in

developing engineering software systems. Many of the techniques are not

implemented as production software tools. Others require extensions and

further xesearch. Even if all of the techniques were available as production

tools, the problem of developing advanced engineering software systems would

not be solved a Each of the techniques discussed address only a portion of the

total problem. A complete solution will require the integration of all of the

various tools into a single framework for engineering computer applications.

The Computer Aided Engineering Software Environment (CAESE [kas'e-]), as

proposed herein, is designed to be a prototype research and production

engineering computer system based on the techniques presented in chapter 4.

CAESE is neither a single system nor a collection of programs, but rather it

is a collection of system components which are shared by developers,

researchers, and users, and which are applied to all of the steps needed to

apply computers to the design and engineering process.

From the operational viewpoint, CAESE is basically a two level, three

component system. It is patterned after the current generation of support-

supervisory systems. However, it contains a number of new features and

concepts which are significant and which make CAESE different from its

predecessors.

The top level (the first component) is the application level — the

application environment. It consists of all of the domain specific tools,

programs, and procedures, as well as the data utilized in the computer aided

engineering process for any specific application area (each separate problem

domain has its own individual application environment). This level performs

the actual design and engineering computations.

The bottom level (the second component) is the system level — the system

environment. It consists of all of the components, data, and support software

which are independent of any application domain. This level performs no

engineering or design. However, it is used by all of the applications and the

remainder of the system (including the support environment) as a run-time

support system. The application environments are built on the system

environment.

www.manaraa.com

67

The third major component of CAESE (also at the bottom level) is the

development support software — the support environment. This component

provides the various tools which are used to develop and maintain both the

system and application levels. The support environment is not used to perform

or to provide run-time support for any computations. It is used only to

create, configure, and maintain the remainder of the total system (both the

system and the application environments),

The following is an introduction to these components, the problems they

address, and the technologies they use. It is not meant to be a complete

presentation of CAESE. Rather it is an introduction and a "strawman" design

of the system, its features, and its capabilities. Each of the environments

will be discussed separately in the following sections, although the

environments are interrelated. A presentation of the overall structure and

the relationships of the environments and the components which comprise CAESE

follows the description of the individual environments.

5.1 The System Environment

The system environment is a collection of components which are used to

provide a variety of system and run-time support features needed to solve the

problems described in chapter 3 and to form the basis of a computer aided

engineering system. Each of the components addresses one or more of the

specific problem areas, and each is built from one or more of the various

solution techniques. The major software components of the system environment

include: (1) an engineering oriented database management system, (2) a

knowledge based system kernel, (3) a standards processing syiitem, (4) a

complete set of interface systems, (5) a project management system, (6) a

design supervisor, and (7) an overall organizational framework for all

components. Each of these are discussed below.

5.1.1 Engineering Relational Database Management System

The engineering database management system is the common database manager

used by all applications and system components for all data handling

requirements. The database manager consists of a complete run-time database

management system, and a number of components associated with the support

environment (described in section 5.2) such as a data definition language,

data dictionary, and data mapping language.

www.manaraa.com

68

line engineering database manager is basically a relational system.

However, it has a number of extensions which are considered significant for

the engineering application. These include: (1) extended data types,

(2) context and scope, and (3) data tracking.

Data Types: The existing relational systems are business oriented,

and have a limited number of data types, typically names,

character strings, booleans, and integers. For use in

engineering applications, these data types need to be extended

to include additional basic data types and other data

aggregates. The additional basic types would include (but not

be limited to) reals (various precisions), complex numbers, and

enumeration set types. Data aggregates would include the

traditional vector and array structures, but these would be

extended to include other structures such as tensors, networks,

and trees. These and similar types of logical data groupings

exist in engineering, and a mechanism needs to exist in the

database management system to handle such data aggregates (in

the whole as well as the individual components).

Since it is impossible to predetermine the complete set

of all possible data types, appropriate mechanisms must exist

to augment and extend the base types as needed, and to provide

more abstract types (higher level types) based en the supplied

primitive types — to provide a "data abstraction" capability.

Data types can not be considered just to represent a

collection of bits or words. Many of the various data items

used in engineering have some physical significance, and the

database manager must be able to deal with the attributes which

represent the physical characteristics of the data items.

Typically, these attributes include: (1) the units of the

data, (2) default values for the data, and (3) constraints on

valid data values. Capabilities would exist in the database

manager to automatically deal with the associated attributes

while manipulating tic actual data.

Context and Scope: The features of context and scope described in

section 4.2 need to be built into the database manager. This

permits all programmed data references to be context

independent. Context and scope are declared externally to the

www.manaraa.com

69

data references, either through explicit statements in the

procedural language used or through user level commands. The

context and scope declarations are then used by the database

manager to augment each data reference to determine the actual

data which will fulfill a request.

The various data primitives can have context and scope

dependent information associated with them. This information

is used to invoke transformations, converting data from one

form to another slightly different form automatically.

Data Tracking: Data tracking is accomplished by associating

"ingredients" and "dependents" attributes with each data item.

These attributes declare what other data items and processes

are used to create a given piece of data — its ingredients,

and what other data items are computed from an item — its

dependents (one set can be determined from the other). Such

declarations may be either static or dynamic. The information

is used by the database manager to determine the effects of

changing a data item, and to maintain the consistency of the

data. The database manager can determine the set of data which

needs to be updated due to a change, and will invoke all of the

necessary processing to complete the update.

Data tracking attributes can be used to form the basis

for a data flow driven architecture. The database manager will

determine and compute all of the ingredients of any data item

and cause the data item to be derived automatically whenever it

is needed. Programs only need to request the desired results,

the database manager will provide all of the control used to

compute the results.

In addition to the database manager to support the applications, the

complete database management system must include an information storage and

retrieval component. The information storage and retrieval system allows end-

users to query, create, and update information in the various databases,

without the need to write applications programs. This component utilizes the

capabilities of the interface system to provide input, and report generation

facilities to provide output.

www.manaraa.com

70

5.1.2 Knowledge Based System Kernel

The knowledge based system kernel provides the mechanisms for controlling

the use of expert knowledge. It consists of a control processor and an

explanation system. Learning and knowledge integration, components of a

complete knowledge based system, are part of the support environment.

Control Processor: The control processor is the basic operational

component of a knowledge based system. Through the use of the

knowledge sources, it determines which rules to invoke, and

monitors the various actions that result. For its operation,

the control processor must be able to access all of the

knowledge sources, and determine which are applicable in any

situation. Additionally, there must be a database access

mechanism to permit the control processor to monitor and query

the database, and to provide the knowledge sources with the

mechanisms to access the data they require for problem solving.

The data is accessed through the common database manager, but

the encoding of the knowledge sources may not contain explicit

data access statements (this type of explicit coupling reduces

the system flexibility and adaptability). All linkages of data

to knowledge sources is encoded by generic name, and the actual

binding is deferred until execution-time.

Explanation System: Since the problem solving behavior of the

knowledge based system is not determined until execution-time,

it is necessary for the system to explain what problem solving

strategy it is using, and why it selected that particular

strategy. In this way, an engineer can monitor the performance

of the system, and redirect its behavior when needed. This

redirection can take the form of changes to the knowledge

sources, or it can consist of providing additional data which

will cause the controller to select a different problem solving

behavior. Once a solution is determined, the explanation

system will inform the engineer as to how the decisions were

reached, and he can then use this information to determine the

next step to be taken. Additionally, such information can be

used to determine the effectiveness of the various knowledge

sources and rules, and can provide information which is used to

improve the problem solving behavior of an application.

www.manaraa.com

71

5.1.3 Standards Processing System

Standards provisions are very similar to the rules in expert systems.

Thus, the structure and form of the standards processing system will be quite

similar to that of the knowledge processor. Since the standards typically

have been represented as decision tables in computer based processing, it may

be logical to continue to use this representation. This representational

difference in knowledge will be the major difference between standards And

knowledge sources, and it may dictate that there be two different processing

systems: one for general knowledge, and one for standards. However, it may

be the case that both processors are instances of the same system.

The standards processing system will consist of a control processor used

to govern the execution and interpretation of the standards. The control

processor must have the mechanisms to select the applicable provisions of a

standard, just as the knowledge based system must be able to access and select

the knowledge sources. Similarly, the standards processing system will

contain a database link to allow the various provisions of the standards to

obtain their data from an application's databases. An explanation system also

will be included to provide a mechanism to inform the engineer as to how-and-

why the standards processing decisions were made.

The standards processing system is designed to be independent of any

particular standard. The standards exist as a collection of data which is

accessed and processed only by the standards processor. Since explicitly

coded linkages between processes, standards, and data do not exist, the

standards can be changed as needed, with minimal impact. This ability to

change standards will require the existence of support tools, in the support

environment, to build the computer processable form of a standard from its

normal textual description.

5.1.4 Interface System

The interface system provides all of the mechanisms through which users

access and communicate with CAESE and the applications. It includes

facilities for language input, tabular and report output, graphical input, and

graphical output. There are a number of individual interface components which

can be used by the applications and other syBtem components. They include:

(1) an input language translation system, (2) a report generator, (3) a

graphics core, (4) an error handler, and (5) a communications mechanism.

www.manaraa.com

72

Input Language Translation System: The input language system

provides the capabilities to support the translation of the

variety of command and data languages which would be uued by

CAESE and the applications. The system consists of three

distinct levels of software. The lowest level interfaces to

the physical devices, and produces a stream of input characters

which is device independent. The second level takes this input

stream and converts it into a variety of basic tokens (words,

numbers, delimiters, etc.). The highest level combines the

basic tokens into higher level language constructs. All of the

languages are described in terms of these constructs, and the

applications interface to the system to parse this level of

language input.

Only artificial (as opposed to natural) languages are

being considered. Natural language translation is still beyond

the scope of a production system. However, some of the

inferenciug and implicit content techniques used in natural

language systems to produce more fluent and natural input may

be of value [WaltD78].

Report Generator: The computational procedures of the applications

can produce output which may be represented in either tabular

or graphical form. The report generator provides the software

tools which are used to produce tabular output without the

explicit coding of output producing programs. The user (either

end-user or applications programmer) can use the report

generator to describe the content of a report along with the

physical layout and organization of the tables. The report

generator will access the requested information from the

databases and produce a report in the prescribed format.

Graphics Core: The graphics core provides basic software support

system for all graphical interactions, both input and output.

Patterned after the proposed standards [GKS79, GSPC79], the

graphics core provides a programmer interface which is both

system hardware and graphical device independent. To provide

this independence, there are two levels of software: a device

dependent processing level, and a device independent level.

Programs are written using the capabilities provided by the

www.manaraa.com

device independent level. The graphics system converats the

requested graphical opertions into a lower level set of basic

device independent primitive operations. The device dependent

level converts these primitivies into the actual instructions

used to drive the graphics devices. It is advantageous to

construct another level on top of the device independent level.

The various graphics constructs provided by the proposed

standard core systems represent primitive operations, and

applications require considerable programming to provide usable

interfaces. A higher level provides graphical primitives which

are more useful in engineering. Essentially, it provides a

virtual engineering graphics machine. Thus, the common

capabilities and features required by the applications need not

be repeatedly developed for each application.

Error Handler: Errors occur throughout the execution of the

applications. Errors can be due to either incorrect data or

due to a program detecting faults and inconsistencies in its

operation. The concept of the error handler is to provide a

single system component which is invoked whenever any error

occurs. In this way, all errors are routed through a common

error handler and treated in a consistent manner. Features

such as run-time errors from batch execution being routed back

to an interactive terminal initiating the task and logging of

errors can all be isolated and programmed at the system level.

The applications need only raise error conditions; the system

is responsible for all further interactions and processing.

Communications and Access Mechanism: The communications and access

mechanisms provides the lowest level of user interface and

communications support. CAESE is designed to be used

simultaneously by a variety of users, each accessing the system

through different types of devices. In addition to accessing

the system, it is necessary for the users to communicate among

themselves. The communications and access mechanism provides

the support software for these features, eliminating the need

for any application to deal with device dependent issues or

multi-user communications.

www.manaraa.com

74

5.1.5 Project Manager

CAESE is envisioned as being a project oriented system. Each application

is developed to be a design system for a certain class of engineering project,

and each individual project is handled separately, via its own databases. The

project manager is used to instantiate and supervise any project. It is a

general purpose application, independent of any individual type of design

application. Each application system will share a number of databases,

standards, knowledge sources, and computational processes. The project

manager is used to configure the exact set of such components for any

application. Additionally, it is used to establish what users have access to

a project and what are the rights of the individual userB.

In addition to establishing configuration and user control, the project

manager acts as an ox'erall run-time project supervisor. The project manager

maintains the status of the project, monitora all work, and is used to produce

the reports describing project work. It also enforces security, verifying all

users' rights and privleges.

5.1.6 Design Processor

The design processor is the highest level of any engineering application

system, yet it is application independent. The project monitor is used to

create and monitor a project. The design processor is used to control all of

the engineers' work on the project. It is the mechanism which the engineer

uses to communicate with the various application components. Through it he

invokes processes to establish goals and direct computations. The function of

the design processor is similar to the operating system on a computer. It

establishes and directs the various tasks to be performed, allocates resources

to the tasks, and oversees the routing of user input to the task and the

routing of task output back to the user.

5.1.7 Overall Organization

The various components described above, along with the application

modules are combined into a single system to form a computer aided engineering

application system. All of the system environment components are designed to

be autonomous. Just as explicit coupling between data items and processes is

not specified, there is a similar desire to uncouple the individual system

environment components to the greatest possible extent. Some coupling will

www.manaraa.com

75

exist. Various components, such as the standards processor and the knowledge

processor, must be able to access information from the databases, and they

will use the same database management system as used by any application. To

access the data, some interfaces between the components will exist, but these

interfaces will not be tightly coupled links.

Based on the success of the virtual computer model in earlier large

systems, it seems reasonable to select the virtual machine model as a suitable

structure for the overall CAESE organization. In the virtual machine model,

each of the system environment components are considered to be individual

virtual processors, each tailored to the specific tasks being performed. All

of the virtual processors which represent the system environment components

are implemented using a common kernel of support functions specifically

designed for a multiple processor virtual computer model. The support

functions provide the overall system control and the mechanisms for the system

environment components to communicate and interface with one another. The

design processor described above is at the highest level in the virtual

system, and is used to control and coordinate all of the other processes; it

is the operating system for the virtual machines.

The CAESE system environment can not do any engineering without the

addition of application modules. Applications are designed and implemented as

separate components using the facilities provided by the components of the

system environment. Each of the applications are modeled as one or more

virtual attached processors; each processor implements a particular set of

operators and performs a specific task, but all rely on the system environment

to perform common system functions. Thus, the overall virtual computer model

can control and support the various application components, just as it

controls the system components.

5.2 The Support Environment

Any large-scale software system can not simply be designed and then coded

in a programming language. There are a number of problems associated with

managing the development of the various software components. Managing and

maintaining the symbolic form of the software (the source code

representation), and developing procedures for modifying operational programs

are not straightforward tasks. Failure to properly deal with Lhese issues has

adverse effects on software development and maintenance efforts and costs, and

can also influence the availability and reliability of ayscems. In a system

www.manaraa.com

76

such as CAESE, these problems are compounded by the existence of:

(1) databases, (2) standards, and (3) knowledge rules.

The support environment is a collection of software tools [KernB76] used

to assist in the software development and maintenance effort. It includes

several components: (1) software to assist in preparing standards for

processing, (2) software to assist in developing the various knowledge rules

and to incorporate the rules into the applications, (3) programming languages

used to develop the various system and application components, (4) software

used to maintain the symbolic and execution forms of the system, and (5) an

overall framework for all of these components. Each of the support

environment components are discussed below.

5.2.1 Standards Support

The information which represents standards is not coded into any part of

an application which uses a standard, but rather, it is the data to the

standards processor. As such, there must be a mechanism to enter this data,

and to organize and structure the internal representation of the standards.

The simplest means of providing standards support consists of a language and

input system used to describe and input the various components of the

standard, and a database used to store the standard. The standards

administrator (the individual system level user who has the responsibility for

maintaining and managing the standards) would convert the textual form of a

given standard into its language description, and use the standards support

system to enter the data and prepare the data structures used in standards

processing. It also will be necessary to supply an output system. The output

system provides a means to display the internal representation of the standard

as maintained by the system. Such a display could be used to verify that the

system internal representation is consistent with the desired form, and that

errors of misinterpretation have not occurred.

There are a number of problems associated with developing a

representation for any given standard. Conversion of the textual form into

the decision tables, networks, and outlines, which have been used to rerr^PTit

standards, is a difficult process made more complex by the inherent ambiguity

and inconsistency in the standards. Significant research has been conducted

which addresses these problems, and a variety of techniques and prototype

tools have been developed. The development of a second generation of

standards development and analysis aids is now underway [FenvS79a, FenvS79b].

www.manaraa.com

77

These aids are designed to "provide a comprehensive, general set of computer

aids for the analysis and synthesis of standards." As such, these aids are

the integration of a number of tools, (tools which are used to convert from

the textual representation of a given standard to an internal representation)

into a complete standards development system. It is logical to consider that

such a standards development system be included in the CAESE support

environment. Thie software would integrate the work of developing standards

and their textual representations with the system for standards processing. A

processable form of the standard would be developed in parallel with the

textual representation. Thus, many potential problems resulting from the

misinterpretation of the standard would be eliminated.

Standards are dynamic, constantly being revised. An important function

of the standards support software is to aid in the changing and updating of

standards. Since the standards are data, and are separated from the run-time

standards processor, changes are made by replacing standards or individual

provisions of standards. A major problem lies in the linkage of a standard to

the remainder of the system. The standards are implicitly linked £.u the

database and to the knowledge rules and applications programs. Any change of

any of these components may result in problems if the actual linkages can no

longer be resolved at run-time. Thus, it is important that the standards

support system have a mechanism for determining which linkages exist, and to

provide information to the system standards administrator concerning the

potential impact of a change on the remainder of the system (not only a

standards change, but also a database change or a knowledge rule change).

5.2.2 Knowledge Integration

Knowledge is represented as data in the knowledge sources, and it is

separate from the knowledge processing of the kernel of the knowledge based

system. As with standards, a mechanism must exist for codifying and

presenting to the system the expert knowledge used by the applications. The

knowledge support software will consist of a language to describe the

knowledge and knowledge sources, a database to store the knowledge, an input

processor to enter the knowledge into the database, an output processor to

display the knowledge which had already been entered into the system, and a

mechanism to determine how the knowledge rules relate and are linked to the

applications which use the knowledge.

www.manaraa.com

78

Knowledge will change and must be updated, and the system must be able to

"learn", either through explicit instruction or through the automatic

accumulation and modification of knowledge based on experience [LatoJ77]•

Learning through experience is performed in conjunction with the actual

processing of the knowledge. Explicit instruction may be performed along with

problem solving, or this may be a segregated activity. Thus, a complete set

of learning features will be available for use in both the support environment

and in the system environment. Similarly, explanation features will exists in

the system environment for run-time use, and in the support environment to

assist in developing and maintaining knowledge.

5.2.3 Development Tools

Standards support and knowledge integration are two specific examples of

the capabilities in the support environment. There are a large number of

similar types of components and tools useful in other phases of the software

development process. For example, it can be envisioned that CAESE uses a

number of languages developed for the specific needs of the various system

environment components. In addition to the languages for the standards and

knowledge representation, there would be database definition languages, data

mapping languages, languages to describe graphics operations, a language to

describe the physical hardware configuration, one to describe the software

configuration of an application (the databases, standards, knowledge sources,

etc.), and a language in which the applications are written. Additionally,

many of the application systems will have their own end-user languages. A

separate language would be used to describe these individual application

languages. As part of the support environment, each of these languages

require a compiler and data or file structures for maintaining source and

object forms of the programs written in these languages.

The proliferation of all of these tools implies that the total system

will be quite large and encompass many lines of code. Maintaining such a

volume of code will be quite difficult. This problem is complicated by the

desire to maintain the code in a form which is compact (duplicate code, such

as occurs with COMMON m FORTRAN, being stored only once) and independent of

the particular hardware and software system used for execution. Software

tools will be required to assist in this code management problem. Ada has

attacked this problem by providing a language environment of tools which are

used to support the development of programs, an editor tuned for the language,

www.manaraa.com

79

a debugger, and a database, all grouped into a single operational system

[FairR80]. These tools serve the sole purpose of easing the software

development burden by providing needed capabilities which are tuned to the

language. The set of development tools present in the CAESE support

environment form a similar software development environment.

5.2.4 Operational Tools

The operational tools are used to assist in the actual operation and use

of CAESE and its application systems, whereas the development tools are

designed specifically for system and application creation. A variety of

operational tools are needed. They include utilities to dump databases for

display, utilities for archiving databases, and a utility used to reconfigure

and remap databases if a change in the physical or logical organization

invalidates the current form.

A log reporter would also be a useful tool. It is often desirable to

maintain a running log of who performed what operation or who is responsible

for what change. The system environment interface component contains the

capabilities to create such a log. The log reporter would be used to prepare

reports and answer queries about the information in the log. A variety of

similar tools would be used to assist in the operation of CAESE and the

applications.

5.2.5 Overall Organization

The various support environment components are designed to be application

independent. They exist as system wide capabilities used to support all or

any of the individual applications which require such features. The

components may be built into the applications or they may be used as stand­

alone systems.

Each of the tools is to be considered an application system of CAESE, but

an application which does no engineering or design. The various tools are all

built and configured in a manner similar to the applications (as a virtual

attached processor). They all perform some specific task, are built from the

various components provided at the system level, and are integrated into the

entire system. There is a fine line of distinction between what is a support

environment application and what is a design and engineering application.

www.manaraa.com

80

As an example, consider both the standards support and knowledge

integration systems. Both of these components require databases to store the

knowledge rules or to store the standard provisions. Each of the databases

will be standard CAESE databases. The databases are defined using the

database languages of the support environment, and the system database manager

is used to provide all database functions. All of the input and output

components of the standards and knowledge support systems can use the various

interface features available in the system environment. In effect, the

standards and knowledge support components are completely dependent on the

system environment of CAESE for their operation, and they are identical to

engineering applications in their overall structure, their utilization of

system environment facilities, and their operational appearance to the end-

user. The only difference between support and applications is that the

support applications and the support environment are developing data and

programs which are used in the application environment to support the

engineering applications, whereas actual applications are performing

engineering and design for the end-user. Through the utilization of the

various components of the system environment in providing software support for

other components of the system environment, the support environment, and the

application environment, and the similar use of the support environment in

developing applications, the total system is used to develop and support

itself.

5.3 The Application Environment

All of the project engineering and design is done using the application

environments of CAESE. The typical applications for which CAESE is designed

are each considered to encompass a large, multi-disciplinary problem domain,

rather than being a larger number of smaller, more specific applications. The

following are all potential application domains and some of the major

subsystems of each:

Nuclear Power Plants: Reactor, pressure vessel, and containment

structures, cooling systems, control systems, electrical

generation, auxiliary structures, etc.

Off Shore Platforms: Platform structural analysis and design,

fabrication, exploration components, production systems, etc.

www.manaraa.com

81

High-rise Office Buildings: Foundations, space layout, structural

system, vertical transportation, electrical distribution,

plumbing, environmental and energy systems, construction

management, etc.

Aircraft: Airframe, avionics, propulsion, flight dynamics,

navigation, etc., for some class of aircraft.

Ship Building: Hull structure, propulsion, control systems,

navigation, cargo handling, etc.

Bridges: Substructure, superstructure, construction management,

site layout, etc.

Software Development: Design of large-scale software is similar to

the engineering and design of any physical system. In this

application, the components being designed are the software

subsystems, and che design and engineering problems are due to

managing the interrelations of the components.

The above are typical of the types of applications for which CAESE is

intended. The applications are typified as being: (1) large-scale projects,

(2) complete engineered systems (rather than components of systems), (3) the

integration of multiple subsystems from different engineering disciplines,

(4) ill-structured problems, and (5) governed by a variety of standards.

It is not to be construed that CAESE only will be used for applications

similar to those listed above. The applications listed where all chosen

because they represent the types of large, muLti-disciplinary problem domains

for which CAESE is specifically designed. Other applications, such as finite

element analysis, structural optimization, construction management, or network

planning and modeling are equally well supported by CAESE. The single

discipline or analysis oriented activities may not require all of the

facilities provided by CAESE, but there ace many capabilities that will be

beneficial in developing software systems for any type of engineering problem

domain.

Each of the specific engineering problem domains which are processed by

CAESE exist as individual application environments (i.e., CAESE—Bridges,

CAESE—Power Plants, CAESE—Office Buildings, etc.). Each application

environment consists of a number of individual subsystems which are integrated

to form a complete engineering design system. Various utility systems, such

as finite element analysis, which are components of many different application

environments are developed individually, but linked together with other

www.manaraa.com

82

components to form a complete application package (this linkage need only be

done at a logical level) . Thus, each of the applications appear to be whole

in-and-unto themselves, and each may be used individually without knowledge of

any other application environment.

There are several components in each application environment. These

components exist for one or more of the subsystems. They include:

(1) database descriptions, (2) descriptions of standards, (3) knowledge rules

and procedures, and (4) computational and analytic procedures. The first

three of these are processed directly by the support environment software to

form an information base for the application. The various computational

procedures are integrated with the system environment to form the complete set

of application environment software. This software requires the data from the

information base for its operation. This integration, performed with the

assistance of the tools of the support environment, results in a complete

application environment. After all of the components have been integrated and

linked into a complete application environment, the resulting application

system is then ready to be used for the domain specific design and engineering

problem for which it was created.

5.4 The Software Environment

Based on the preceding description of the individual environments which

comprise CAESE, the following presents more detail on the interrelations of

the environments and system components.

As stated above, che system environment is the lowest level of software

in CAESE. It is built using the capabilities of the host computer hardware

and system software. The support environment is also at the lowest level, and

it is similarly built on the facilities of the host machine. Both of these

environments are dependent of each other for some functions, such as the

support environment providing source code maintenance for the system

environment, and the system environment providing database management for the

knowledge integration and standards support of the support environment. The

individual application environments are built using the facilities provided by

both the system and support environment in addition to the facilities of the

host. Figure 5.1 shows the interrelation of the levels of the three

environments which comprise the total system.

www.manaraa.com

83

Figure 5.1. CAESE Configuration

www.manaraa.com

84

The relationships between the components of CAESE used in all aspects of

standards processing are shown in figure 5.2. There are two sets of standard

CAESE databases: one set is for the application's data, and the other set is

for storing the standards. The application and the standards processor both

access the databases through the database management system for all their data

needs. Similiarly, the application links to the standards processor for all

of the application's standards processing requirements. The standards support

software also links directly to the database management system. The

relationship between the components of the knowledge processing software is

similar, and it is depicted in figure 5.3. Similar in structure, the

interface component relationships are shown in figure 5.4

Figure 5.5 shows a simplified view of a complete application system. The

information base for the system consists of databases for standards, knowledge

sources, project data, and application data. All databases are accessed

through the database management system. The remaining system environment

components (standards, interfaces, and knowledge processing) comprise the next

level of software (the internal structure of these syBtems has been eliminated

from this figure). Support environment components are not shown since they do

not contribute to the run-time structure of the system. The application

software modules are then built on the top of the system level. The user then

accesses the applications, which remain under the control of the design

supervisor and are monitored by the project management system.

www.manaraa.com

Application

Program Flow

Data & Requests

Standards System

I
Application Modules

Support System

DBMS Link

Standards Link DBMS Link

Standards Processor

Application Link

Database
Management

Control

DBMS Link

System

Data Model

Storage
Model

• Host System

Information Base

Standards Databases i Application Databases

Figure 5.2. Standards Processing System

www.manaraa.com

86

Application

Program Flow

> Data & Requests
Application Modules

1 1

Knowledge Based System

Support System

DBMS Link T

Knowledge Link DBMS Link

Knowledge Processor

Application Link

T -) — —

Database

DBMS Link

Management System

Host System

Information Base

Knowledge Databases Applicat ion Databases

Figure 5.3. Knowledge Processing System

www.manaraa.com

Application

• Program Flow
,Data &
Requests

1 1 r—
— i 1 r—
Application Modules

J i

Figure 5.4. Interface System

www.manaraa.com

88

Appll cation

Figure 5.5. Application System

www.manaraa.com

89

6. DISCUSSION

In the preceding chapiters, a number of problems limiting the development

of advanced engineering software, and a number of potential solution

techniques for these problems were presented. A description of CAESE, a

proposed prototype for the next generation of engineering software systems was

also presented. The following is a discussion of the proposed solution

approach, what prospects there are for the implementation of a system like

CAESE, and what problems still remain to be solved.

6.1 Why the Problems are Currently Unsolvable

Each of the problem domains described in chapter 2 has a relatively

simple and straightforward description. The descriptions are intentionally

vague and rather general; they are first level descriptions of very general,

open-ended applications. The purpose of the generality was to insure that the

solutions would not. be over-constrained. The solutions should reflect the

generality and open-ended nature of the problem domains. In this way, they

will be adaptable and applicable in both current and future design and

engineering problem solving environments.

In addition to the two problem domains, a number of technical problems

were described in chapter 3. These problems result from the scope and the

generality of features desired in engineering software systems (including

those which implement solution systems for the problem domains). Complete

solution systems for the two problem domains would represent state-of-the-art

engineering software systems. If such solution systems were implemented, they

would contain features which are not available in current applications. Due

to the generality of the solutions and the current state of software

technology for engineering systems, it does not seem to be feasible to develop

acceptable solutions for the two problem domains without addressing the

technical problem areas described in chapter 3.

The basic technology to provide the solutions to these problem areas is

available, either as techniques which are currently used in engineering

software systems, or as techniques which can be taken from computer science

research. Even though the technology and some prototype tools exist, nothing

is available for direct use in, and application to, the problem domains.

www.manaraa.com

90

Adaptations will take time; the techniques must be tailored to the

engineering environment and converted into production software tools.

Basically, there is no framework for developing software for general

purpose, open-ended problem domains similar to those described in chapter 2.

The current software technology has been applied only in a limited number of

areas. Integrated, multi-disciplinary, engineering design software systems do

not exist. There are no large-scale production engineering software systems

using techniques such as knowledge based systems or relational databases.

Most applications of these technologies are still in computer science

research.

There appear to be two potential solution approaches for developing

advanced engineering applications and computer based design systems:

Brute Force: In this approach, software systems are developed to

solve the specific problems at hand. Such systems would be

conceived to solve only these problems, and they would be based

on the direct applications of current tools and techniques.

These systems will work; they will solve the problems

described earlier; but they will do no more. Such solution

will tend to be unresponsive, cumbersome, and complex. The

brute force approach would be a continuation of what the

profession is currently doing — developing ad hoc programs.

This approach has not solved the problems, nor has it overcome

the difficulties associated with developing general design and

engineering systems (some of the various issues such as

standards processing have been known for several years, and

production systems have not yet been developed). There is no

reason to believe that a continuation of this approach will be

successful in the future. Attempts at solutions based on the

brute force approach have produced more problems rather than

solutions (that is how the work described herein evolved).

These attempts resulted in a better understanding of the

problems, and this has led to a new set of issues Lo be

resolved.

A major part of the problem of developing advanced

engineering software is not with the variety of technical

issues, but rather, it is with the solution approach. Ad hoc,

rigid solutions do not work for general, ill-defined, open-

www.manaraa.com

91

ended problems. The current solutions are rigid, unadaptable,

and inflexible because they are based on technologies which are

rigid, inflexible, and do not provide the means to address

open-ended, ill-defined problems.

Sophisticated Software: This approach is based on the concept of

developing a new software technology base which is responsive

and addresses the specific problem areas which limit the

development of computer applications for engineering. This

approach is based on the application of sophisticated, state-

of-the-art software techniques. The goal is to produce

general, open-ended, extensible, responsive solutions. With

such a system, it should be possible to address the open-ended,

ill-structured problems currently limiting the development of

engineering applications. CAESE is designed to be such a

system.

The approach of extending the software technology base,

and providing a more sophisticated software environment, is

identical to what was done in the development of the support-

supervisory systems. These systems were developed because the

then current brute force approach to software development did

not successfully meet the needs of engineering applications.

The use of a sophisticated software technology has been successful in the

past. FINITE provides an example of the usefulness of such an approach.

Software complexity measures [WaltC77, SchnV78j indicate that a system like

FINITE (120000 lines of code, 1500 subroutines) should require 406-413 man-

months of development, with a project duration of 20-23 months (these values

are based on conventional programming practice, i.e., the brute force

approach, and may have a margin of error of 40%). This estimate does not

account for the fact that FINITE would be significantly larger (2-3 times) if

developed without the use of POLO, using the brute force approach. This size

increase implies a development effort of 768-1236 man-months. The actual

development effort was approximately 100-150 man-months (accurate data is not

available, but the development team consisted of 4 individuals each

contributing 2-3 man-years). This is effectively an order of magnitude

reduction. A major portion of this reduction can be attributed to the use of

the advanced software technology provided by POLO.

www.manaraa.com

92

The use of the appropriate technology serves to reduce the complexity of

the software product, and it permits software with advanced capabilities and

features to be more readily developed. The continuation of the development of

advanced software support technologies appears to be a viable approach to

solving the current problems.

6.2 Application to the Problem Domains

The various solution techniques discussed in chapter 4, and CAESE, as

described in chapter 5, are designed to address the various aspects of the two

problem domains of chapter 2. Tbe following is a short description of how

these techniques and CAESE will help in the development of computer

applications for these two problem domain».

6.2.1 Problem A — A Computer Aided Design System

CAESE is designed to meet the needs, and to respond to the problems,

described in section 2.1, and it contains many of the features and

capabilities outlined in section 2.1.3. It is directly applicable to the

computer aided design system problem domain. If CAESE existed, it could be

used to develop and support the advanced design and engineering software which

is needed by our profession. The significant features of CAESE, relative to

this problem domain, are the use of knowledge based systems and relational

database management.

The use of a knowledge based system permits the problems associated with

developing a solution to the ill-structured design problem to be addressed.

Knowledge based systems provide a mechanism: (1) to represent design

algorithms, and (2) to perform standards processing including access to a

standard's provisions and feedback from computations. A knowledge based

system approach to engineering software provides the flexibility and structure

to develop a system which is adaptable. Since a knowledge based system will

determine its own problem solving strategy, and since the linkages between the

various problem solving components and data items are weak, the use of

knowledge based systems yields the types of adaptable, flexible, and

extensible systems which are needed for a computer aided design application.

The use of an extended engineering relational database management system

provides the mechanisms to address all of the various problems associated with

data handling and data integration. Since the data is content addressed, and

www.manaraa.com

93

accesses from the application to the database are weakly coupled, the

resulting engineering software system is flexible and extensible.

Besides having the basic components, form, and structure to address the

needs of design and engineering applications, CAESE has a number of specific

features which are useful for this problem domain. The various interface

features, project management system, and software development and support

environment all assist in developing advanced applications with less work.

These, and other features such as the information storage and retrieval

component of the data manager, provide a total system which is well suited to

the needs of the engineer, and which has a number of components which need not

be developed for every application.

6.2.2 Problem B — User Interfaces for Finite Element Systems

CAESE is not directly applicable to the finite element interface problem

domain described in section 2.2. One of the requirements for the inteifaces

was that the kernel finite element system be FINITE. FINITE relies on POLO

for its support, and a change to a different base system would be equivalent

to redeveloping the application. In fact, the features of CAESE are such that

a simple, direct conversion would not be appropriate. However, the

development of a finite element application based on CAESE would be

significantly simpler, the resulting code would be cleaner and less cluttered,

and it would require less effort than was spent in the development of FINITE.

The development of FINITE was aided by the existence of POLO and the features

it provides. CAESE may be considered to be a successor to POLO; it provides

features which would further simplify the development of a finite element

application.

In CAESE, there are a variety of features to support user interfaces.

The basic graphics components and an extensible graphics core would simplify

the graphics programming task. An extended set of input language translation

features would also ease the development of the user interfaces, and would

permit more work to be performed by the system supplied software. Other

features, such as a single error handler and the logger built into the system,

would fulfill needs and provide a more usable system., CAESE provides the

features needed to develop a finite element system which will have the

capabilities, and which will respond to the needs, described in section 2.2.

www.manaraa.com

94

In addition to the interface features, the other capabilities of CAESE

are potentially useful, and may lead to a finite element system with a rather

different structure. Consider the use of the data tracking features in the

data manager. This capability, combined with a goal directed, data flow

architecture system design could be used to eliminate all of the program

development associated with controlling the computational process. Associated

with individual processes would be declarations of data requirements and data

products. A program goal of a set of final results, as requested by the user,

could be established. The system would then automatically determine, based on

the relationships between data items, which data items need to be computed in

what order to arrive at the final, requested results. The majority of the

conventional programming for implementing the problem solving strategy is of

the form "do this, then do this, then this, etc." All of the overall

programming strategy of this type would be eliminated. Changing the

relationships between data items would change the program flow without

requiring the reprogramming of the algorithms. This is extremely useful and

powerful, since it permits complex processing to occur without the direct

programming of any of the complex linkages.

Other features of CAESE, such as the relational form of the database

would eliminate much detailed programming. Much of the complex code used to

transform one data representation to another representation would not be

needed. Other capabilities, such as operator overloading could also reduce

development effort and code complexity. Simple, direct encoding of matrix,

tensor, and other types of engineering operations in a programming language

permits it to regain some of the elegance and conciseness of our mathematical

forms.

6.3 Unresolved Issues

A system like CAESE is not a cure-all. There are a number of issues

which have not been resolved. The two most important unresolved items appear

to be: (1) the selection of a computer technology base, and (2) social and

legal acceptance problems. The following discusses these issues, but it does

not provide any solutions.

www.manaraa.com

95

6.3.1 Computer Technology Base

The problems due to the rapidly changing computer technology base were

presented in section 3.5. Section 4.5 and the glossary (section 4 and 5)

presented a number of computer languages and language techniques which could

assist in producing better software, but the prototype design of CAESE does

not address any of these issues. Nothing in the design of CAESE is oriented

towards a particular language, a particular hardware configuration, or a

particular systems approach. The only requirement is that the system be

oriented towards interactive usage.

The system, indeed any new application, should be designed to function in

a variety of hardware and systems environments. This is necessary for it to

gain widespread acceptance and use, to be adaptable, and to be long-lived.

Machine and operating system dependencies are inevitable. The objective is to

minimize these dependencies, and more importantly, to recognize what types of

machine dependent features are needed, and to isolate these. Isolation does

not eliminate such problems, it only localizes them, and reduces their impact

on the remainder of the total system.

Potentially, a more important issue is the selection of a programming

language. Each of the different languages have a number of features which are

potentially beneficial and others which may be detrimental. It is desirable

to develop the complete, detailed system design without being concerned with

an implementation. In this way, biases towards a particular language can not

manifest themselves in the final system structure. Once the complete design

is prepared, an evaluation of the then current, applicable languages can be

made, based on the actual needs.

6.3.2 Social and Legal Issues

A system like' CAESE provides the engineer with an approach to computer

based problem solving which is quite different from that commonly in use

today. As a result, it is expected that there will be considerable resistance

from the engineering community to the acceptance and use of any system like

CAESE. The system presents a radical change (that of a totally integrated,

computer based, engineering environment), and organizations resist change.

The various political, organizational, and social problems [KlinR80, KeenP81]

all present serious questions about the attempts to improve computer usage.

An engineering computer system, and the resulting improvements in engineering,

can be readily justified in terms of their savings and their producing better

www.manaraa.com

96

designs, but this does not inBure acceptance. Engineers are accustomed to

their current practice. They traditionally have not been responsive to

innovations in the design process. Introduction of techniques and changes in

procedures and standards have been slow to be accepted. There is no reason to

expect that a new approach to computer applications should be received

differently.

The use of a computer based design system also poses serious legal

questions. When design work is performed by a computer, who will take legal

responsibility for the design. Engineers may be reluctant to approve work

which they did not personally perform. It will be impossible for the engineer

to verify all computations and results. It will be equally difficult to

verify that the software is error free, and the host hardware is performing

without errors. The software developers will be reluctant to accept legal

responsibility for their systems (currently software is released with a

disclaimer absolving the software developer frim all responsibility and

placing this responsibility on the user). This problem is complicated by the

inclusion of standards processing. The computer implementation of a standard

is a representation of the legal requirements for design and engineering. The

interpretation problem of expressing the machine processable form of the

standard now has legal implications. All of these legal questions regarding

liability due to the use of a computer based design system will affect the

acceptance of such systems.

It is important that such problems are recognized, and if possible,

prepared for. These issues should not deter the development of a new approach

to engineering computer applications. The various technical problems continue

to exist, and there is the need to anticipate the future needs of computer

usage within the engineering profession, regardless of professional

acceptance.

6.4 Conclusions

The computer is a powerful engineering tool. However, as discussed, its

utilization is well below its potential. This underutilization is not due to

a neglect of its power, nor is it due to any explicit desire not to have the

computer do more. The applications which the profession is now trying to

computerize are much more complex and ill-structured than any attempted in the

past. In attempting to develop these new applications, it is necessary to

push the technology which represents how engineering processes are

computerized to its limits. The technological limits of the current

www.manaraa.com

97

generation of software used to support engineering applications are now being

reached. New engineering application systems will exceed the capacity of the

current software tools and support-supervisory systems, and will require

capabilities which are not present in these systems. Pushing the applications

beyond the capabilities of the technology only results in serious problems.

Current problems result from trying to develop computer syBtems for the

eighties and beyond based on the technology developed and used in the sixties.

This is a hopeless situation. Indeed, attempts at developing advanced

features in current computer applications based on the current technology have

not been successful.

This lack of success in developing advanced engineering applications is

based on the lack of a suitable technological base for engineering software

systems. Computer science research has developed a number of new techniques

and concepts which can be utilized in engineering applications. Engineers

have done little to incorporate these ideas into their work. Computer science

researchers have done nothing to address the engineer's problems. The gap

between engineering problems and the current technology used to solve these

problems, and between this technology and the state-of-the-art technology

increases. These relations are depicted in figure 6.1 (revised from

figure 1.1).

Knowledge based systems, relational database management and other topics

from computer science appear to be beneficial to solving the types of

technological problems which are appearing in the attempts to develop advanced

engineering software systems. It is time that the engineering profession take

these techniques and convert them into a set of software tools which are

applicable to engineering and engineering problems. Software tools designed

for dealing with loosely structured, ill-defined problems appear to be a

viable approach to solving the current engineering software development

problems. These tools can form the basis for the next generation of

engineering software system.

Two choices exist for the profession; one is to neglect advances in

computer technology, developing ad hoc engineering applications as in the

past. The other is to try to select what is useful from the computer science

research community, and adapt it to the needs of the engineering profession.

The desire for advanced features and capabilities in engineering applications

will increase, and without changing the current approach to engineering

software development, there is no way to meet these desires and to fulfill the

future software ne'eds of the profession.

www.manaraa.com

98

Applied Technology

Available Technology

Time

Figure 6.1. Software Technology

www.manaraa.com

99

6.5 The Next Step

The various technologies and the preliminary design of CAESE are just

that, technologies and a preliminary design. They represent only the first

step along the road to changing the current approach to the development of

engineering computer applications. The ideas preoented herein form the

starting point for the development of the next generation of engineering

computer systems. A logical next step would be to proceed with the

development of this next generation of software.

This step is going to be long and difficult, consisting of overlapping a

number of phases, as described below. A work schedule for an implementation

of CAESE and a first application is shown in figure 6.2. The bars on the

graph are in correct proportions to each other, but an absolute time scale has

been specifically excluded. It is too early to accurately estimate the total

effort involved, but it can be expected that the resulting system will be on

the order of many tens of thousands of lines of code (50000-500000) and a

total effort being measured in tens of man-years.

The first phase will be to review the preliminary design, and to obtain

more information on the details of current relational database management and

knowledge based systems, since these two areas are changing rapidly. Then it

will be necessary to select aspects of all of the technologies which are most

applicable to the engineering problem domains, and to proceed with a complete,

detailed design of the prototype version of CAESE. The second phase will be

an implementation of the prototype system. With such a system, the actual

viability of the approach can be tested. The prototype must then be

evaluated. Minor changes can be made as the next version of the system is

developed. If major problems are encountered they must be resolved and

further testing done. The third phase will be the development of a complete

version of CAESE, with all the "bells and whistles." This version will be

used to support the first application.

Once the complete, detailed design of the production version of *he

system software is available, the design and implementation of the

applications can proceed. An appropriate first application must be selected.

The problem domain must be sufficiently large to exhibit all of the various

problems described earlier, yet it must not be so large that, the scope will be

beyond what can be handled successfully in the first test. The significance

of this first application can not be underestimated. The technical acceptance

of the system will not come from the design of the base system. The true

www.manaraa.com

100

Testing

Information
Base

Knowledge Sources

Standards

Implementation

a

Selection Design

Inplementatior

Design

Final
Design
Phase

Testing

Implementation

Design

Review

Preliminary
Design
Phase

Implementation
Phase

Time

Figure 6.2. CAESE Implementation Schedule

www.manaraa.com

101

acceptance will come only from the application (the previous support-

supervisory systems are best known for their major applications, not for the

systems themselves).

Once an application has been selected, it must be implemented. This will

require the design of the application system and its subsystems. Along with

the development of code of the application will be the development of the

processable forms of the various standards which will be used. Similarly, the

various knowledge sources and the rules which determine how the system will

operate must be developed. All these pieces can then be integrated to

complete the application. At this point the application will be ready for

full scale testing. Actual engineering problems, those for which existing

solutions are known, must be redesigned using the application system.

Comparisons with the existing solutions will determine how well CAESE and the

application perform, if they are usable, if they have technical problems

(either in the application or in the base system), or if they are too costly

and unresponsive. Then will be time to step back and analyze what has been

created, and to determine what the future might be.

6.6 Epilogue

We keep talking about it.

We say we want it.

We say we are going to do it.

But we never make any real progress.

Maybe it is hard.

Maybe we are afraid of it.

www.manaraa.com

102

REFERENCES

ACI71 , Building Code Requirements for Reinforced Concrete.
(ACI 318—71), American Concrete Institute (ACI), Detroit, Michigan,
1971.

AISC70 , "Specification for the Design, Fabrication and
Erection of Structural Steel for Buildings," Manual of Steel
Construction. Seventh Edition, American Institute of Steel
Construction (AISC), New York, 1970.

AISC80 L , "Specification for the Design, Fabrication and
Erection of Structural Steel for Buildings," Manual of Steel
Construction. Eight Edition, American Institute of Steel
Construction (AISC), Chicago, 1980.

AlwoR72 Alwood, R. J, and Maxwell, T. O'N., "GENESYS — A Machine
Independent System," Proceedings. Collogue International sur les
Systemes Integres en Genie Civil, Principes et Description Generale
des Syst^mes Integres. [International Colloquium on Integrated
Systems in Civil Engineering, Principles and General Description of
Integrated Systems], Editeur G. Deprez, Centre d'Etudes pour la
Promotion des Ordinateurs dans la Construction [Center of Studies
for the Promotion of Computers in Construction (CEPOC)], Universite
de Liege, Liege, Belgium, Vol. 1, No. 1.1, April, 1974.

AstrM76 Astrahan, M. M., et al., "System R: Relational Approach to
Database Management," ACM Transactions on Database Systems (TODS),
Association for Computing Machinery (ACM), Vol. 1, No. 2,
pp. 97-137, June, 1976.

BackJ78a Backus, J., "The History of FORTRAN I, H , and III," Preprints.
ACM-SIGPLAN, History of Programming Languages Conference, SIGPLAN
Notices. Special Interest Group on Programming Languages of the
Association for Computing Machinery (SIGPLAN-ACM), Vol. 13, No. 8,
pp. 165-180, August, 1978.

BackJ78b Backus, J., "Can Programming Be Liberated from the von Neumann
Style? A Functional Style and Its Algebra of Programs,"
Communications of che ACM (CACM), Association for Computing
Machinery (ACM), Vol. 21, No. 8, pp. 613-641, August, 1978.

BaerA79 Baer, A., Eastman, C , and Hem:ion, M., "Geometric Modeling: A
Survey," Computer Aided Design, Vol. 11, No, 5, pp. 253-272,
September, 1979.

www.manaraa.com

103

BellK73 Bell, K., Hatlestad, B., Hansteen, 0. E., and Araidsen, P. 0.,
NORSAM; A Programming System For the Finite Element Method. User's
Manual. Part 1., General Description. Selskapet for industriell og
teknisk forskning ved Norges Tekniske Hogskole [The Engineering
Research Foundation at The Norwegian Institute of Technology],
Trondheim, Norway, February, 1973.

BogeR75 Bogen, R., et al.s MACSYMA Reference Manual, Laboratory of
Computer Science, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1975.

BuchB69 Buchanan, B., Sutherland, G., and Feigenbaum, E. A., "Heuristic
DENDRAL: A Program for Generating Explanatory Hypotheses in Organic
Chemistry," In Machine Intelligence 4. American Elsevier, New York,
1969.

BurnB78 Burner, B., Ives, F., Lixvar, J., and Shovlin, D., "The Design,
Evaluation, and Implementation of the IPAD Distributed Computing
System," Proceedings. American Society of Civil Engineers Conference
on Computers in Civil Engineering. American Society of Civil
Engineers (ASCE), Atlanta, Georgia, pp. 126—144, June, 1978.

CanoM80 Canon, M. D., et al., "A Virtual Machine Emulator for Performance
Evaluation," Communications of the ACM (CACM), Association for
Computing Machinery (ACM), Vol. 23, No. 2, pp. 71-80, February,
1980.

ChamD76 Chamber1in, D. D., "Relational Data-Base Management Systems,"
Computing Surveys, Association for Computing Machinery (ACM),
Vol. 8, No. 1, pp. 43-66, March, 1976.

DateC75 Date, C. J., An Introduction to Database Systems. Addison Wesley,
Reading, Massachusetts, 1975.

DaviR77 Davis, R., "Generalized Procedure Calling and Content-Directed
Invocation," SIGPLAN Notices. Special Interest Group on Programming
Languages of the Association for Computing Machinery (SIGPLAN-ACM),
Vol. 12, No. 8, pp. 45-54, August, 1977.

DeMiR79 DeMillo, R. A., Lipton, R. J., and Perlis, A. J., "Social
Processes and Proofs of Theorems and Programs," Communications of
the ACM (CACM). Association for Computing Machinery (ACM), Vol. 22,
No. 5, pp. 27~l-280, May, 1979.

D0D8O , Reference Manual for the Ada Programming Language.
Defense Advanced Research Projects Agency (DARFA), United States
Department of Defense (DoD), Washington, D.C., June, 1980.

DoddR78 Dodds, R. H., Jr., Lopez, L. A., and Pecknold, D. A., Numerical
and Software Requirements for General Nonlinear Finite Element
Analysis. UILU-ENG—78-2020, Civil Engineering Studies, Structural
Research Series, No. 454, Department of Civil Engineering,
University of Illinois at Urbana-Champaign, Urbana, Illinois,
September, 1978.

www.manaraa.com

104

DoddR80 Dodds, R. H., Jr., and Lopez, L. A., "A Generalized Software
System for Nonlinear Analysis," Advanced Engineering. Software.
Vol. 2, No, 4, pp. 161-168, 1980.

EastC76 Eastman, C , Lividini, J., and Stoker, D., "Database for Designing
Large Physical Systems," Workshop on Computer Representation of
Physical Systems, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, August, 1976.

EastC77 Eastman, C , and Henrion, M., "GLIDE: A Language for Design
Information Systems," Computer Graphics. Special Interest Group on
Computer Graphics of the Association for Computing Machinery
(SIGGRAPH-ACM), Vol. 11, No. 2, pp. 24-33, Summer, 1977.

EastCJO Eastman, C , GLIDE2 User's Manual. Institute of Building Sciences,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1980.

Egel074 Egeland, 0., and Araldsen, P., "SESAM-69, A General Purpose Finite
Element Program," Computers and Structures. Vol. 4, No. 1,
pp. 41-68, January, 1974.

ErmaL80 Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R.,
"The Hearsay-II Speech-Understanding System: Integrating Knowledge
to Resolve Uncertainty," Computing Surveys. Association for
Computing Machinery (ACM), Vol. 12, No. 2, pp. 213—253, February,
1980.

FairR80 Fairley, R. E., "Ada Debugging and Testing Support Environments,"
Proceedings of the ACM-SIGPLAN Symposium on the Ada Programming
Language. SIGPLAN Notices. Special Interest Group on Programming
Languages of the Association for Computing Machinery (SIGPLAN-ACM),
Vol. 15, No. 11, pp. 16-25, November, 1980.

FalkA73 Falkoff, A. D., and Iverson, K. E., "The Design of APL," IBM
Systems Journal. International Business Machines (IBM), Vol. 17,
No. 4, pp. 324-334, July, 1973.

FalkA78 Falkoff, A. D., and Iverson, K. E., "The Evolution of APL,"
Preprints. ACM-SIGPLAN, History of Programming Languages Conference,
SIGPLAN Notices. Special Interest Group on Programming Languages of
the Association for Computing Machinery (SIGPLAN-ACM), Vol. 13,
No. 8, pp. 47-57, August, 1978.

FenvS64 Fenves, S. J., Logcher, R. D., and Mauch, S. P., STRESS— A
User's Manual. MIT Press, Cambridge, Massachusetts, 1964.

FenvS66 Fenves, S. J., "Tabular Decision Logic for Structural Design,"
Journal of the Structural Division. American Society of Civil
Engineers (ASCE), Vol. 92, No. ST6, pp. 473-490, December, 1966.

www.manaraa.com

105

FenvS69 Fenves, S. J., Gaylord, E. H., and Goel, S. K., Decision Table
Formulation of the 1969 AISC Specification. Civil Engineering
Studies, Structural Research Series, No 347, Department of Civil
Engineering, University of Illinois at Urbana-Champaign, Urbana,
Illinois, August, 1969,

FenvS73 Fenves, S. J., "Representation of the Computer-Aided Design
Process by a Network of Decision Tables," Computers and Structures,
Vol. 3, No. 5, pp. 1099-1107, September, 1973.

FenvS79a Fenves, S. J., Performance Requirements for Standards Processing
Software, R—79—111, Department of Civil Engineering, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, Also available from National
Bureau of Standards (NBS), NBS GCR 80-257, United States Department
of Commerce, Washington, D.C., April, 1979.

FenvS79b Fenves, S. J., Functional Specifications for Standards Processing
Software, R—120—679, Department of Civil Engineering, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, Also available from
National Bureau of Standards (NBS), NBS GCR 80-258, United States
Department of Commerce, Washington, D.C., June, 1979.

FryJ76 Fry, J. P., and Sibley, E. H., "Evolution of Data-Base Management
Systems," Computing Surveys. Association for Computing Machinery
(ACM), Vol. 8, No. 1, pp. 7-42, March, 1976.

GA080 , Use of Computers by Firms Providing Architect-Engineer
Services to Federal Agencies. LCD—81-2, United States General
Accounting Office (GAO), Washington, D.C., October, 1980.

GarrC74 Garrocq, C. A., and Hurley, M. J., "The IPAD System: A Future
Management / Engineering / Design Environment," Proceedings of the
Design Automation Workshop. Institute of Electrical and Electronics
Engineers (IEEE), Vol. 11, pp. 327-334, June, 1974.

GaylE72 Gaylord, E. H., and Gaylord, C. N., Design of Steel Structures.
Second Edition, McGraw-Hill, New York, 1972.

GKS79 , Information Processing Graphical Kernel System (GKS)
Functional Description, Proposal of Standard DIN 00 66 252, 1979.

GoelS71 Goel, S. K., and Fenves, S. J., "Computer-Aided Processing of
Design Specifications," Journal of the Structural Division. American
Society of Civil Engineers (ASCE), Vol. 97, No. ST1„ pp. 463-479,
January, 1971.

GrovLSO Groves, L. J., and Rogers, W. J., "The Design of a Virtual Machine
for Ada," Proceedings of the ACM-SIGPLAN Symposium on the Ada
Programming Language. SIGPLAN Notices, Special Interest Group on
Programming Languages of the Association for Computing Machinery
(SIGPLAN-ACM), Vol. 15, No. 11, pp. 223-234, November, 1980.

www.manaraa.com

106

GSPC79 , "Status Report of the Graphic Standards Planning
Committee, Part II: General Methodology and the Proposed Core
SyBtem Standard (Revised)," Computer Graphics. Special Interest
Group on Computer Graphics of the Association for Computing
Machinery (SIGGRAPH-ACM), Vol. 13, No. 3, August, 1979.

HarrJ75a Harris, J. R,, Melin, J. W., Tavis, R. L., and Wright, R. N.,
Technology for the Formulation and Expression of Specifications.
Volume I: Final Report. UILU-ENG-75-2029, Civil Engineering
Studies, Structural Research Series, No. 423, Department of Civil
Engineering, University of Illinois at Urbana-Champaign, Urbana,
Illinois, December, 19/5.

HarrJ75b Harris, J. R., Melin, J. W., and Albarran, C , Technology for the
Formulation and Expression of Specifications. Volume II: Program
User's Manual. UILU-ENG—75-2030, Civil Engineering Studies,
Structural Research Series, No. 424, Department of Civil
Engineering, University of Illinois at Urbana-Champaign, Urbana,
Illinois, December, 1975.

HarrJ80 Harris, J. R., Organization of Building Standards: Systematic
Techniques for Scope and Arrangement, Unpublished doctoral thesis,
Department of Civil Engineering, University of Illinois at Urbana-
Champaign, Urbana, Illinois, 1980.

HernE74 Herness, E. D., and Tocher, J. L., "Design of Pre- and
Postprocessors," In Structural Mechanics Computer Programs. Surveys.
Assessments, and Availability. Ed. W. Pilkey, K. Saczalski, and
H. Schaeffer, University of Virginia Press, Charlottesville,
Virginia, pp. 887-898, 1974.

IBM81a , SQl/Data System General Information, GH24-5012-0,
International Business Machines (IBM), White Plains, N.Y., 1981.

IBM81b , SQL/Data System Concepts and Facilities. GH24-5013-0,
International Business Machines (IBM), White Plains, N.Y., 1981.

IPAD80 , IPAD: Integrated Programs for Aerospace-Vehicle
Design. NASA Conference Publication 2143 (CP-2143), National
Aeronautics and Space Administration (NASA), Washington, D.C., 1980.

IverK62 Iverson, K. E., A Programming Language. John Wiley and Sons, New
York, 1962.

JensK76 Jensen, K., and Wirth, N., PA.SCAL User Manual and Report. Second
Edition, Springer-Verlag, New York, 1976.

JensR79 Jensen, R. W., and Tonies, C. C , Software Engineering, Prentice-
Hall, Englewood Cliffs, New Jersey, 1979.

Keen?81 Keen, P. G. W., "Information Systems and Organizational Change,"
Communications of the ACM (CACM), Association for Computing
Machinery (ACM), Vol. 24, No. 1, pp. 24-33, January, 1981.

www.manaraa.com

107

KernB76 Kernighan, B. W., and Plauger, P. J., Software Tools. Addison
Wesley, Reading, Massachusetts, 1976,

KimW79 Kim, W., "Relational Database Systems," Computing Surveys.
Association for Computing Machinery (ACM), Vol. 11, No. 3,
pp. 185-211, September, 1979.

KlinR80 Kling, R., "Social Analyses of Computing; Theoretical
Perspectives in Recent Empirical Research," Computing Surveys.
Association for Computing Machinery (ACM), Vol. 12, No. 1,
pp. 61-110, January, 1980.

LatoJ77 Latombe, J-C, "Artificial Intelligence in Computer-Aided Design,"
In CAD Systems. Proceedings of the 1FIP Working Conference on
Computer-Aided Design Systems. Ed. J. J. Allan, III., North-Holland,
pp. 61-170, 1977.

LevyD80 Levy, D., Mittman, B,, and Newborn, M., "3rd World Computer Chess
Championship," Communications of the ACM (CACM), Association for
Computing Machinery (ACM), Vol. 23, No. 11, pp. 661-664, November,
1980.

LogcR67

LopeL72a

LopeL72b

LopeL77a

Logcher, R. D., et al., ICES STRUDL-I. The Structural Design
Language. Engineering User's Manual, R67~56, Civil Engineering
Systems Laboratory, Department of Civil Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1967.

Lopez, L. A., " P O L O — A Supervisor for Integrated Systems
Development," Proceedings, Collogue International sur les Systemes
Integres en Glaie Civil, Principeo et Description Generale des
Systemes Integres. [International Colloquium on Integrated SyBtems
in Civil Engineering, Principles and General Description of
Integrated Systems], Editeur G. Deprez, Centre d'Etudes pour la
Promotion des Ordinateurs dans la Construction [Center of Studies
for the Promotion of Computers in Construction (CEPOC)], University
de Liege, LiSge, Belgium, Vol. 1, No. J.6, April, 1974.

Lopez, L» A., "POLO — Problem Oriented Language Organizer,"
Computers and Structures. Vol. 2, No. 4, pn. 555-572, September,
1972.

Lopez, L. A., "FINITE: An Approach to Structural Mechanics
Systems," Intarnational Journal for Numerical Methods in
Engineering, Vol. 11, No. 5, pp. 851-866, 1977.

LopeL77b , Report on the Workshop for Software Coordination
within the University Environment. National Science Foundation
Project Report (NSF), Prepared by L. A. Lopez, Available from
National Technical Information Service (NTIS), PB 273686/AS, United
States Department of Commerce, Springfield, Virginia, October, 1977.

www.manaraa.com

108

LopeL77c , Appendices to the Report on the Workshop for Software
Coordination within the University Environment. National Science
Foundation Project Report (NSF), Prepared by L. A. Lopez, Available
from National Technical Information Service (NTIS), PB 273687/AS,
United States Department of Commerce, Springfield, Virginia,
October, 1977.

LopeL79a Lopez, L. A., Dodds, R. H., Rehak, D. R., and Urzua, J.,
POLO-FINITE. A Structural Mechanics System. User's Manual, Civil
Engineering Systems Laboratory, University of Illinois at Urbana-
Champaign, Urbana, Illinois, Department of Civil Engineering and the
Academic Computer Center, University of Kansas, Lawrence, Kansas,
1979.

LopeL79b Lopez, L. A., "Software Problems in the University Environment,"
Journal of the Technical Councils. American Society of Civil
Engineers (ASCE), Vol. 105, No. TC2, pp. 385-399, December, 1979.

LopeL80 Lopez, L. A., Dodds, R. H., Rehak, D. R., and Uzzua, J.,
POLO-FINITE. A Structural Mechanics System, Example Solutions
Manual. Civil Engineering Systems Laboratory, University of Illinois
at Urbana-Champaign, Urbana, Illinois, Department of Civil
Engineering and the Academic Computer Center, University of Kansas,
Lawrence, Kansas, 1980.

LoveL42 Lovelace, Lady A. A., Notes upon the Memoir "Sketch of the
Analytical Engine Invented by Charles Babbage," By L. F. Menabrea
(Geneva, 1842), Reprinted in Charles Babbage and His Calculating
Engines. Ed. P. Morrison and E. Morrison, pp, 248—249, 284. Dover
Publications, N&tf York, 1961.

MacNR71 MacNeal, R., and McCormick, C. W., "The NASTRAN Computer Program
for Structural Analysis," Computers and Structures. Vol. 1, No. 3,
pp. 389-412, October, 1971.

McCaJ62 McCarthy, J., et al., Lisp 1.5 Programmer's Manual, MIT Press,
Cambridge, Massachusetts, 1962.

McCaJ78 McCarthy, J., "History of LISP," Preprints. ACM-SIGPLAN. History
of Programming Languages Conference. SIGPLAN Notices, Special
Interest Group on Programming Languages of the Association for
Computing Machinery (SIGPLAN-ACM), Vol. 13, No. 8, pp. 217-223,
August, 1978.

McCoC72 McCormick, C. W., The NASTRAN User's Manual, NASA Specialty
Publication 222(01) (SP—222(01)), National Aeronautics and Space
Administration (NASA), Washington, D.C., June, 1972.

MeloR78 Melosh, R. J., Marcal, P. V., and Berke, L., "Structural Analysis
Consultation Using Artificial Intelligence," In Research in
Computerized Structural Analysis and Synthesis. NASA Conference
Publication 2059 (CP—2059), National Aeronautics and Space
Administration (NASA), Washington, D.C., October, 1978.

www.manaraa.com

109

MichA76 Michaels, A. S., Mittman, B., and Carlson, C. R., "A Comparison of
Relational and CODASYL Approaches to Data-Base Management,"
Computing Surveys. Association for Computing Machinery (ACM),
Vol. 8, No. 1, pp. 125-151, March, 1976.

MichJ78 Michener, J. C , and van Dam, A., "A Functional Overview of the
Core System with Glossary," Computing Surveys. Association for
Computing Machinery (ACM), Vol. 10, No. 4, pp. 381—387, December,
1978.

MillC61 Miller, C. L., COGO — A Computer Programming System for Civil
Engineering Problems. Department of Civil Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts, August, 1961.

MillR74 Miller, R. E., et al., "Feasibility Study of an Integrated Program
for Aerospace Vehicle Design (IPAD)," Proceedings of the Design
Automation Workshop. Institute of Electrical and Electronics
Engineers (IEEE), Vol. 11, pp. 335-346, June, 1974.

Mo078 Mo, 0., Klein, H. F., Pahle, E., and Harwiss, T., "Finite Element
Programs Based on General Programming Systems," Computers and
Structures. Vol. 8, No. 6, pp. 703-715, June, 1978.

NASA72a , The NASTRAN Theoretical Manual. Ed. R. H. MacNeal,
NASA Specialty Publication (SP—221(01)), National Aeronautics and
Space Administration (NASA), Washington, D.C., April, 1972.

NASA72b , The NASTRAN Programmer's Manual. NASA Specialty
Publication (SP-223(01)), National Aeronautics and Space
Administration (NASA), Washington, D.C., September, 1972.

NaurP60 Naur, P., et al., "Report on the Algorithmic Language Algol 60,"
Communications of the ACM (CACM), Association for Computing
Machinery (ACM), Vol. 3, No. 5, pp. 299-314, May, 1960.

NeweA72 Newell, A., and Simon, H. A., Human Problem Solving. Prentice-
Hall, Englewood Cliffs, New Jersey, 1972.

PerlA78 Perlis, A. J., "The American Side of the Development of Algol,"
Preprints. ACM-SIGPLAN, History of Programming Languages Conference.
SIGPLAN Notices, Special Interest Group on Programming Languages of
the Association for Computing Machinery (SIGPLAN-ACM), Vol. 13,
No. 8, pp. 3-14, August, 1978.

RadiG78 Radin, G., "The Early History and Characteristics of PL/I,"
Preprints. ACM-SIGPLAN, History of Programming Languages Conference.
SIGPLAN Notices. Special Interest Group on Programming Languages of
the Association for Computing Machinery (SIGPLAN-ACM), Vol. 13,
No. 8, pp. 227-241, August, 1978.

RehaD79 Rehak, D. R., and Lopez, L. A., "A Tool for Translating Problem
Oriented Languages," Journal of the Technical Councils. American
Society of Civil Engineers (ASCE), Vol. 105, No. TCI, pp. 33-42,
April, 1979.

www.manaraa.com

110

RequA80 Requicha, A. A. G., "Representations for Rigid Solids: Theory,
Methods, and Systems," Computing Surveys. Association for Computing
Machinery (ACM), Vol. 12, No. 4, pp. 437-464, December, 1980.

KoosD66 Roos, D., ICES System Design. MIT Press, Cambridge, Massachusetts,
1966.

RossD59 Ross, D. T., APT System Documentation. General Description of the
APT Syatem, MIT Servo Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, Vol. I, June, 1959.

RossD78 Fos% D. T., "Origins of the APT Language for Automatically
Programmed Tools," Preprints. ACM-SIGPLAN. History of Programming
Languages Conference. SIGPLAN Notices. Special Interest Group on
Programming Languages of the Association for Computing Machinery
(SIGPLAN-ACM), Vol. 13, No. 8, pp. 61-99, August, 1978.

SammJ78 Sammet, J. E., "The Early History of COBOL," Preprints.
ACM-SIGPLAN. History of Programming Languages Conference. SIGPLAN
Notices, Special Interest Group on Programming Languages of the
Association for Computing Machinery (SIGPLAN-ACM), Vol. 13, No. 8,
pp. 121-161, August, 1978.

SchaH78 Schaeffer, H. G., "A Review of the International Symposium on
Structural Mechanics Software," Computers and Structures. Vol. 8,
No. 5, pp. 589-598, May, 1978.

SchnV78 Schneider, V., "Prediction of Software Effort and Project
Duration— Four New Formulas." SIGPLAN Notices. Special Interest
Group on Programming Languages of the Association for Computing
Machinery (SIGPLAN-ACM), Vol. 13, No. 6, pp. 49-59, June, 1978.

SchrE74 Schrem, E., "Development and Maintenance of Large Finite Element
Systems," In Structural Mechanics Computer Programs. Surveys,
Assessments, and Availability, Ed. W. Pilkey, K. Saczalski, and
H. Schaeffer, University of Virginia Press, Charlottesville,
Virginia, pp. 669-685, 1974.

SchrE77 Schrem, E., "From Program Systems, to Programming Systems for
Finite Element Analysis," In Formulations and Computational
Algorithms in Finite Element Analysis: U.S.-German Symposium.
Ed. K-J. Bathe, J. T. Oden, and W. Wunderlich, MIT Press, Cambridge,
Massachusetts, pp. 163—190, 1977.

SchrE78 Schrem, E., "Functional Software Design and its Graphics
Representation," Computers and Structures. Vol. 8, No. 3/4,
pp. 491-502, May, 1978.

SchrE79 Schrem, E., "Trends and Aspects of the Development of Large Finite
Element Software Systems," Computers and Structures., Vol. 10,
No. 1/2, pp. 419-425, April, 1979.

ShorE76 Shortliffe, E. H., Computer-Based Medical Consultations: MYCIN,
American Elsevier, New York, 1976.

www.manaraa.com

Ill

SimoH73 Simon, H. A., "The Structure of 111 Structured Problems," Second
Edition, Artificial Intelligence. Vol. 4, pp. 181—201, 1973.

TaneA76 Tanenbaum, A. S., "A Tutorial on ALGOL 68," Computing Surveys.
Association for Computing Machinery (ACM), Vol. 8, No. 2,
pp. 155-190, June, 1976.

TaylR76 Taylor, R. W., and Frank, R. L., "CODASYL Data-Base Management
Systems," Computing Surveys. Association for Computing Machinery
(ACM), Vol. 8, No. 1, pp. 67-103, March, 1976.

TricD76 Trichritizis, D. C , and Lochovsky, F. H., "Hierarchical Data-Base
Management," Computing Surveys. Association for Computing Machinery
(ACM), Vol. 8, No. 1, pp. 105-123, March, 1976.

TuriA50 Turing, A. M., "Computing Machinery and Intelligence," Mind.
Vol. LIX, No, 236, 1950, Reprinted in Computers and Thought,
Ed. E. A. Feigenbaum, and J. Feldman, McGraw-Hill, New York,
pp. 11-38, 1963.

UBC76 . Uniform Building Code. International Conference of
Building Officials, Whittier, California, 1976.

WaltC77 Waltson, C. E., and Felix, C. P., "A Method of Programming
Measurement and Estimation," IBM Systems Journal, International
Business Machines (IBM), Vol. 16, No. 1, pp. 54—73, 1977.

WaltD78 Waltz, D. L., "An English Language Question Answering System for a
Large Relational Database," Communications of the ACM (CACM),
Association for Computing Machinery (ACM), Vol. 21, No. 7,
pp. 526-539, July, 1978.

WilsJ76 Wilson, J. L., and Lansberry, C. R., "Interactive Computer
Graphics for Computer Aided Design in Civil Engineering," Computer
Graphics, Special Interest Group on Computer Graphics of the
Association for Computing Machinery (SIGGRAPH-ACM), Vol. 10, No. 2,
pp. 89-96, Summer, 1976.

WinoT71 Winograd, T., Procedures as a. Representation for Data in a.
Computer Program for Understanding Natural Languages, Ph.D. Thesis,
MAC TR-84, Massachusetts Institute of Technology, Cambridge,
Massachusetts, Reproduced by National Technical Information Service
(NTIS), AD 721-399, United States Department of Commerce,
Springfield, Virginia, February, 1971.

WinsP77 Winston, P. H., Artificial Intelligence. Addison Wesley, Reading,
Massachusetts, 1977.

WrigR75 Wright, R. N., Harris, J. R., Melin, J. W., and Albarran, C ,
Technology for the Formulation and Expression of Specifications.
Volume III: Technical Reference Manual, UILU-ENG-75-2031, Civil
Engineering Studies, Structural Research Series, No. 425, Department
of Civil Engineering, University of Illinois at Urbana-Champaign,
Urbana, Illinois, December, 1975.

www.manaraa.com

112

APPENDIX A. FINITE USER'S WISH LIST

The following is a short description of the features which are needed, or

have been requested as modifications and extensions to FINITE. Familiarity

with the details of the capabilities currently present in FINITE will be

useful in understanding these requests [DoddR78, LopeL79a, LopeL80]. This

discussion is based on the model of the system presented in section 2.2.3.

There is no significance to the ordering of the items within the list.

Sizes not specified: The first data item required to describe any

substructure is its size, in terms of the number of elements

and nodes in the substructure. Providing these values is

sometimes inconvenient for the user. This data is required by

the system, but the model input processor could determine

values based on the remaining data entered by the user. The

lack of an exact value during data entry would create

difficulties in strict error checking used to guarantee that

all of a substructure's data has been provided.

Alphanumeric node and element labels: All node and element labels

are currently integer quantities. Users would like the ability

to use descriptive names for these items. The integer

representation could be maintained within the computational

kernel. The model input and output processors would need to

deal with the alphanumeric labels and the translation of these

to the internal integer form. Data structures to store the

translation to the internal form also would be needed in the

mathematical model.

Noncontiguous node and element numbers: The element and node

number labels must be contiguous to aid in checking. However,

it is often inconvenient to renumber the entire mesh when

deleting a portion of a substructure. The solution to this

problem (providing an external form, and internal form, and a

translation) is the same as the solution for the alphanumeric

node and element label problem described above.

www.manaraa.com

Nonrectangular constraints: Constraints must be entered in a

rectangular coordinate system. This is often inconvenient for

curved structures. The model input processor could be used to

translate the data from a nonrectangular system to the common

internal form, as is currently done for coordinates. A more

advanced approach would be to provide coordinate systems as a

basic part of the input language. Any type of coordinate

translation would then be performed by the language support

software.

Default element loadu: There are no default forms for element

loads. The element load input lists are often long, with only

minor variations between items. The change would require

extensions to the input language definition and the associated

language translation facilities in the model input processor.

Nodal coordinate system: All primary results are computed in the

local structural coordinate system. Nodal coordinate systems

would be convenient in many cases; shells are a typical

example. The model input and output processors would be

affected, and an additional model data structure would be

required to support this extension.

Nodal temperature gradients: Temperature gradients may only be

applied at the element level, via element loads. This often

requires large amounts of duplicate element load data when a

gradient field is distributed over several elements. Changes

to the model data structures, the model input processor, and

the computational kernel would be required.

Nodal materials: For certain types of directional materials, the

ability to specify material data based on nodes is more

convenient than associating the data with the elements.

Changes to the data structures, the model input processor, and

computational kernel would be required.

Improved lists: The ability of describe data through lists such as

"1-35 BY 3" is useful, but the capability could be extended,

"ALL BUT 10-17 for example. Such a change would be limited to

the modification of the support language translation routine.

www.manaraa.com

Units: All input and output quantities must be given in a fixed

set of units, and the system assumes the user is consistent.

This is bothersome and error prone. The change would permit

units to be associated with any data item. Such a change would

require that parameters have units, and that all of the model

input and output processors handle units. This change is

potentially complex due to the nature of degree of freedom

assignments. Any element may use a certain degree of freedom

to represent a quantity with certain units. The system needs

to be able to combine this element with any other element which

many use the same degree of freedom to represent a quantity

with different units.

Parameter input: Parametric models are often useful in research.

Parameters could be provided by extensions to the language

support software. This software would provide the capabilities

needed to translate the parametric model input into a

conventional problem description.

Expression input: Simple quantities are often computed from

complex expressions before being input. Direct expression

input is more useful and less error prone. Expressions could

be provided at the language level, by the language support

software. The input language definition would be modified so

that an expression would be acceptable wherever a number is now

required.

Natural language: Natural language input is the most flexible

input form. Language processing is independent of any

underlying support system. Thus, the change could be isolated

to the language support software. However, natural language

input translation is very complex.

Renumbering: Requiring the user to properly number the mesh is

often a complex and error prone user task. Mesh renumbering

algorithms are useful in providing economical solutions by

reducing the bandwidth of the equations. Implementing

renumbering algorithms requires support data structure to

provide the translation between the user numbering and the

internal numbering, the renumbering process, and a numbering

translation process in the model output processor.

www.manaraa.com

115

Top down structural models: Structural models are defined from the

bottom up; the lowest level substructures must be defined

first, and higher level structures are defined based on these

lower level substructures. Top down models, recursively

subdividing the structure, are sometimes more natural. This

change is compatible with the current modeling process. An

alternative model input processor would be required.

Material models at strain points: Each nonlinear element has one

common material model for all strain points. This is

restrictive for some types of problems. A change to permit

different material models at each strain point would be basic

and affect much of the system. Data structures for both the

computational and mathematical models would be changed, and all

processes which deal with stresses, strains, or materials would

be affected.

Material models for all elements: Material models are currently

used only for nonlinear elements. Linear elements take

material data from element parameters. To make the process of

using material models consistent would also be a basic change,

similar to the one described above.

Nonvector degrees of freedom: The system supports ten groups of

degrees of freedom at each node. Each group consists of three

components which transform as a vector quantity. Certain

derivative quantities, such as twist, transform as tensors, and

elements using such degrees of freedom do not function properly

when used out-of-plane. This change would be basic and impact

the library and the computational kernel.

Multiple sets of constraints: Any change to a constraint

invalidates the entire constraint set and all computed results.

It is often valuable to combine results from different

constraint conditions. The ability to maintain multiple

constraints sets and solutions for each set would be better

than the current "FOURIER" approach. The effects of this

change would be wide spread, affecting both the computational

model and computational kernel.

www.manaraa.com

Linear analysis as a subset of nonlinear: Internally, linear

analysis and nonlinear analysis are handled as separate cases,

although from the user's viewpoint there are no major

differences between such analyses. For the system to treat

linear analysis as a subset of nonlinear analysis would require

changes to the computational kernel.

Global versus local stiffness: All stiffnesses are computed in the

global coordinate system. For certain types of elements and

problems this is not convenient. This change would require a

modification of the computational kernel.

Dynamics: Dynamics is a major extension, and it impacts all

aspects of the system.

Tables used with any element: The use of tables to provide element

parameters is restrictive, in that the table must be compatible

with the element. This compatibility is the responsibility of

the table and element implementors. A dynamic linkage

mechanism is needed to allow any table to be used with any

element. Additionally, the use of units has possible side

effects, since the default table units may not be the same' as

the current problem units. This change would affect only the

library and the model input processors.

Multi-valued parameters: All element parameters are scalars. For

materials the parameters may be multi-valued. Elements are

required to use many single parameters for ii.esa such as nodal

thickness, which requires a vector with a value for each node.

Providing multi-valued parameters would be a minor language

change and would affect the library and the model input

processor.

Bounds on properties: Element parameters must be bounds-checked by

the element modules (i.e., E > 0.0, 0.0 < NU < 0.5, etc.).

Associating bounds with the parameters in the library would

permit the system to uniformly enforce bounds-checking. This

change would require modifications to the library and the model

input processor.

Number of element parameters: The maximum number of parameters and

results for each element is fixed. The current value of this

limit has been found to be restrictive. Changes to eliminate

http://ii.es

www.manaraa.com

this restriction would be required in the library and the

computational model creation and processing components.

Change element parameters at run-time: Once defined, any change to

an element parameter causes the system to invalidate all

results for the substructure in which it appears, and for all

higher level substructures. For some cases, this is not

appropriate. For example, it is not possible to change a

parameter which would affect output computation without

requiring all data to be recomputed. This capability could be

provided by designating the action which is to occur when a

parameter is changed. The change would affect the library and

the model input processor.

Element parameters grouped by type: Element parameters are

untyped. Providing types (i.e., as control, geometric,

display, etc.) may be more convenient for processing and

modifications of parameters as described above. It would

require changes to the library, the model input processor, and

all element modules.

Element geometry: The complete geometry of an element is scattered

throughout the coordinates and parameters. It is not known

until stiffness generation time, and is often recomputed by

every element module. A single element process to create and

store the element geometry may be appropriate. Placing this

process in the model checking process would also provide better

model diagnostics. This change would require modifications to

the library and model data structures, as well as to the model

input processor, the computational kernel, and the element

modules. This would be a new feature with wide spread effects

on the entire system.

System control by elements: The various element modules are

automatically and unconditionally invoked. In some cases (such

as stress computations for nonlinear elements) the element

module's function may be performed directly by the system

without the need of invoking the element module. The element

could provide information which would direct the system's

operations. This would require changes to the library and the

computational kernel.

www.manaraa.com

Improved data generators: There are a number of problems with the

data generators; polar generation does not function properly

at all times, and triangular elements can not be generated.

Improvements would be isolated to the generators.

Ability to generate any type of data: Generation of incidences and

coordinates may eliminate a large portion of the input data.

Constraints and loads often exhibit patterns which could be

generated in a similar manner. Extending the generator to

compute spatial variations of any component would require an

enhanced generator, and its incorporation into the model input

processor.

User data generators: For complex problems, such as shell

intersections, a specific problem oriented user data generator

would often be useful. There is a need to interface ouch a

generator to the system without the generator producing POL

input to be processed as normal input. This would require the

ability to support user written modeling processors in the

model input processor. Such a generator would consist of data

generation routines and a description of the POL input language

used by the generator. The generator input would be translated

by the system, and the generator would be invoked to directly

build the mathematical model.

Data extraction: Data extraction is the opposite of user data

generators. It is used to provide specific data for special

post-processors. It would require the modification of the

model output processor to support user written output

processors. The data extractor would consist of a set of

routines which would access the model results and produce

output, and a POL description of the language statements used

to drive the data extractor. The system would provide language

translation and invoke the data extractor.

Solution status: The system does not record the status (i.e.,

triangulated, solved, etc.) of a solution for any problem. It

must be externally recorded by the user. The change would

require the system maintain the status information, and permit

user inquiry. Modifications of the computational database and

computational kernel are required to support this change.

www.manaraa.com

Solution log: A log would record all steps in the solution

procesa. This would permit inquiry to determine the actions

taken to reach the current problem state. Logging would

require the addition of the log data structure and a logger in

the computational kernel.

Improved error recovery: The system was designed for the batch

environment. Errors usually cause eventual abnormal system

termination. The error action should depend on the operating

environment, permitting the user to regain control if possible

and t.'ke corrective action. This change would influence all

processors.

No fatal errors: Many errors terminate the system in a manner such

that problem restart is not possible. No fatal errors should

exist, unless caused by a fault in the underlying system. This

change would influence all processors.

Model output: There is currently no mechanism to output the

current structural model. Capabilities are needed to output

any portion of the model. Such a process would require major

additions to the model output processor, and possibly the

addition of element output modules. This would be a valuable

user feature.

Computational results output: Only the unassembled stiffness

matrix may be output from the computational model. Maintenance

and element testing would be improved by the ability to output

any component of the computational model. This would require

the creation of the computational results output processor.

Nonnumeric output quantities: All element stress and strain output

quantities are restricted to be real numbers. State quantities

(i.e., element loading, element unloading, or strain point

yielded) are best expressed as nonnumeric values. This change

would require modifications to the library and the model output

processor.

Material output: Material models have no formal mechanism for

providing output. Currently they may augment element output,

but this requires explicit element and material compatibility.

Formal material model output is needed, and would require

modifications to the library, the computational kernel, and

model output processor.

www.manaraa.com

Combined compute and output requestu: The compute and output

requests must be given separately for each step, if output is

to be obtained as computed. This often leads to long sequences

of requests, especially for nonlinear problems. More complex

requeBt forms would be useful and eliminate user input.

StreBB averaging: Stress averaging is a complex problem when

different types of elements (with different types of stress

resultants) are combined. Stress averaging would be performed

by the model output processor, and the library must contain

data describing the types of stress quantities computed by each

element.

Stress interpolation: Stress interpolations are needed for display

and averaging. This would be performed by the model output

processor, and the library must contain data describing the

interpolation functions.

Maximum and minimum stresses: Stress limits could be computed by

the model output processor.

Subsets and ordered results: Only a li> 'ted capability exists for

providing a subset of the results computed by an element.

Complete control over the number and order of all output

quantities is more useful. This change would affect the model

output processor and the element output modules.

Model graphics: An integrated model display capability is lacking.

This facility would permit any portion of the model to be

displayed. This would be a major addition. The additions

include library descriptions of how to process an element,

element display modules, and the display components of the

model output processor.

Result graphics: Integrated results display is also lacking and

would be a major addition. This provides the capability of

displaying any computed results. It would require similar

extensions to the library and the model output processor as

described above.

Graphics transformations: Arbitrary graphics viewing capabilities

(i.e., clipping, perspective, rotations, hidden surface

elimination, etc.) are essential to provide useful displays.

These features would be provided by the model output processor

and the graphics support system.

www.manaraa.com

Function plotting: In addition to display of the results in terms

of the model, direct plotting of graphs, such as load versus

displacement are useful. This feature would require a function

plotting capability in the model output processor and in the

graphics support system.

Digitizer input: Translation of structural models from drawings

may be best accomplished through digitizer input. This

extension would be isolated to the model input processor.

www.manaraa.com

122

APPENDIX B. DATABASE MANAGEMENT

A database is a collection of data items, used in an organization's data

processing applications. This collection is stored on some type of secondary

storage medium, typically disk. The database exists independently of all the

processing applications which use it. The contents of the database are

created, used, and maintained by the various applications. As such, the

database integrates the applications. The database management system is the

collection of software which lies at the interface between the physical device

access procedures and the applications. It supports all of the operations on

the data and all accesses to tbe database.

B.l The Evolution or Database Management Systems

Database management has resulted from attempts by commercial computer

users to improve their data processing capabilities. Originally, programs

input data, processed it and created files of information (usually on tape) to

be used in subsequent processing. The file creation program "decided" what

data would be kept, and how it would be stored. The file creation program

was, in effect, the "owner" of the data, and was responsible for making all

decisions regarding data storage and retention. The data produced by one

program was soon needed by other applications. The needed data was quite

ofcen difficult to obtain (missing data items, wrong format, format unknown,

data order made it difficult to process, etc.). This led to attempts to

integrate the data from all the applications. Databases and database

management systems (DBMS) are now used to store and maintain this integrated,

centralized form of the data.

There are a number of advantages to the centralized approach:

(1) reducing redundancy: duplicate or similar data stored in different files

for the use of different applications can be combined and stored only once;

(2) improved availability: data can be shared and made available to any

application independent of other applications; (3) reducing inconsistency:

redundant data can be different, once the data is combined these

inconsistencies can not occur; (4) enforcing standards: data can be

represented in a standardized form which simplifies use and maintenance for

all applications; (5) enforcing data security: authorization and data access

www.manaraa.com

123

come from a single point, and thiB part of the system enforces all access

procedures; and (6) balancing conflicting requirements: each data user has

his own best form for the data, and a centralized system permits a form which

is most appropriate for all users to be selected. The problems with the

database approach are related to the same aspects which are its advantages.

It is not a simple task to create such a system, to insure security and

integrity, and to determine what forms are most appropriate for all data

users.

Through many years of development* the file based systems led to database

systems [FryJ76]. The various systems which evolved all have two basic

components: (D a data model used to define the organization and structure of

the data items in the database, and (2) a data language used by the

application to access the data. There are a variety of forms which are

possible for these components. However, the data language is highly dependent

upon the type of data model. The three data models which have evolved are:

(1) hierarchical [TricD76], (2) network [TaylR76], and (3) relational

[ChamD76, MichA76, KimW79].

Hierarchical: Tae hierarchical model is based on the organization

of data int-o a hierarchical or tree structured form. This data

model is often chosen because tree structures are natural in

many applications and organizations. Data frequently occurs in

a 1:N relationship. There are many (N) occurances of a data

it an which are all subordinate to a single item. A typical

example might be a company which is divided into many

departments with a group of employees associated with each

department. The employees are below the departments in the

hierarchy, and similarly, the departments are below the

company. An example of a hierarchical model is shown in

figure B.l.a. To access the data, it is ueccssary to know the

physical organization of the database. The data is

"organizationally addressed." Traversal of the tree structures

is required to obtain any data item. The hierarchical

organization is useful and simple, especially if the

applications are naturally hierarchical. However, if the data

structure or the access paths do not conform to the

hierarchical form, severe problems can result due to the

complex processes needed to access the data.

www.manaraa.com

124

P^ XX

(a) Hierarchical Model

(b) Network Model

(c) Relational Model

Figure B . l . Data Models

www.manaraa.com

125

Network: The network model is also known as CODASYL or DBTG (Data

Base Task Group). The 1:N relationship used in the

hierarchical model can not be used to represent all forms of

data. The network approach relaxes the strict tree form, and

allows data items to be interrelated as are the nodes in a

network. Data relationships are N:H (M items are subordinate

to N items). An example of a network model is shown in

figure B.l.b. Again, the data is accessed by traversing the

various components of the data structure.

Relational: The relational model is based on the mathematical

theory of relations. The data is stored in sets of relations,

typically represented as tables of tuples. A typical relation

is shown in figure B.l.c. The major difference with the other

models it! that all data in the relational model exists in a

single form, and all of the data accesses are made by logical

content rather than by the physical data organization. In the

relational model, the data is "content addressed." Additional

information on the relational model is presented below.

B.2 Database Management Systems Structure

A database management system consists of a number of different

components, and provides a number of distinct features. The major components

of a typical system are:

Data Definition: The data definition facilities are used to

describe the data items and data structures used in any

database. There typically are two components. The first is a

data definition language (DDL). This language is used to

describe the logical organization of the database: its

components, their organization, and their relationships. This

description is sometimes denoted the "schema." There exists

one global schema for the entire database. Individual users

may need only portions of the database, and these subsets of

the database are described in a similar manner and are denoted

"subschema" or "views." The data definition does not specify

how the data is physically stored (the size of fields, record

formats, etc.). A data mapping language (DML), the second

component of the data definition facilities, is used to

describe this physical data representatiou.

www.manaraa.com

126

Access: The access facilities are used to enter, query, update,

and manipulate the data contained in the database. There are

often two sets of access facilities. One is provided for

programmers to use in application programs. The other is for

end-users, to support simple generalized queries, without the

need to develop special application programs.

File Structure: The file structures are used to store the contents

of the database.

Data Dictionary: This is a component of the database which is used

to maintain the descriptions of the items in the database.

Thus, the database is self-documenting.

Integrity Control: Various constraints on items in the database

must be maintained (i.e., SALARY > 0). The integrity software

is used to verify all data manipulation requests to insure they

do not violate any constraints.

Concurrency Control: Databases are used in a multi-user

environment, and this component of the database management

system insures that all data updates are synchronized and that

deadlocks do not occur.

Access Control: This feature provides the authorization of a

user's privileges for data query and modification.

Recovery: Failures, due to software or hardware, can invalidate

portions of the database. Recovery features are used to

maintain sufficient information so that the database can

automatically be rebuilt after a failure.

Report Generator: This software is used to produce generalized,

tabular output from the database, without the need to program

special applications.

B.3 The Relational Approach

A relation is defined as [DateC75]:

Given sets 0^, D2, ..., DQ (not necessarily distinct), R is a

relation on these n sets if it is a set of ordered n-tuples

< d,, dn» *••» ^n > such that d, belongs to 0,, d« belongs to

D2» *"' dn b e l o n 8 8 t 0 0Q*
 S e t s Di» t,2» '"' Dn a r e c a l l e d t n e

domains of R. The value n is the degree of R.

www.manaraa.com

127

The tabular representation of relations is the most common form utilized. It

has the following properties:

(1) no two rows (tuples) are identical;

(2) the ordering of the rows (tuples) is insignificant; and

(3) the ordering of the columns is significant unless the columns

are referred to by their domain name, rather than by position.

The rules stated above are all that is known about data organization in

the relational model. Data accesses are made by specifying which values of

which domains of a given relation are desired. From the base relation, a new

relation is formed which contains only the requested data. The entire set of

data is then returned to the application as a set of tuples, or the tuples are

returned individually. The database management system is responsible for

determining how the data is actually stored (its physical organization).

The terminology used in the relational model can be compared to that of

the more conventional file structures. A relation corresponds to a file. A

tuple corresponds to one record in a file (all records have the sane format).

A domain is equivalent to a given field within the records. A set corresponds

to all possible values of a field (domain).

As an example of a relation and its use, consider the structural steel

properties from the AISC manual [AISC701. A portion of a relation

W_SHAPES_PROPERTIES might be as shown below. In this example the domains are

the designation of the shape, its weight, area, principal moment of inertia

(IXX), etc.

W_SHAPES_PROPERTIES

DESIGNATION

W14xl36
W14xl27
W14xll9
WHxlll
W14xl03
W14x95
W14x87

WEIGHT

136
127
119
111
103
95
8/

AREA

40.0
37.3
35.0
32.7
30.3
27.9
25.6

IXX

1590
1480
1370
1270
1170
1060
967

IYY

568
528
492
455
420
384
350

www.manaraa.com

128

A typical query on this relation may take the following form (ityntax based on

Syntern R [AstrM76]). The query will find the WEIGHT and DESIGNATION of all

members with IXX greater than 1000 and AREA greater than 35.

SELECT WEIGHT, DESIGNATION

FROM W_SHAPES_PROPERTIES

WHERE IXX > 1000

AND AREA > 35

The result would be a relation (unnamed) with two domains (weight and

designation) and two tuples (those which satisfy the conditions). The

resulting relation is shown below:

WEIGHT

136
127

DESIGNATION

W14xl36
W14xl27

As can be seen from the above example, the relational approach is

conceptually quite simple. A single common form is used for all data items,

and the physical data organization is never utilized.

www.manaraa.com

I

129

APPENDIX C. ARTIFICIAL INTELLIGENCE

"Can machines think?" The question was posed in 1950 by Alan Turing

[TuriA50], but the controversy over the potential of machine intelligence has

existed for 150 years. Lady Ada Lovelace (Lord Byron's daughter), the

"programmer" of Charles Babbage'u Analytical Engine wrote, "The Analytical

Engine has no pretensions to origJTaate anything. It can do whatever we know

how to order it to perform" (her italics) [LoveL42]. The study of this

intriguing problem has evolved into the discipline of artificial intelligence

(Al). A simplistic definition of Al is: creating a nonhuman system capable

of intelligent thought. The entire human thought process (cognition,

knowledge representation, learning, reasoning, perception and communication)

is so complex and ill-defined that the characterization of what constitutes an

intelligent human process is quite impossible. As a result, no attempt will

be made to give a formal definition of AL.

Artificial intelligence deals with the computer implementation of those

tasks which require (or are currently limited to) human problem solvers. Some

typical problem domains which are considered to typify hiiman intelligent

processes (and are subjects of Al research) include: language translation,

game playing (bridge, poker, chess), theorem proving, symbolic manipulation,

natural language understanding and discourse, speech understanding, and expert

problem solving. Of course, once a machine is able to solve any of these

problems with the efficiency and skill of a human, there is the fei-Ling that

the problem does not require real intelligence.

C.l Artificial Intelligence Concepts and Research

Artificial intelligence is a new field. No formal methodology exists for

converting an intelligent problem solving task into a program. Rather the

field consists of the status of the solution to a number of problem domains,

and a number of concepts upon which the solutions are based.

C.1.1 Concepts

A common set of basic concepts and ideas are present in the programs

which implement solutions to the intelligent problem solving tasks. These

basic concepts are search, control, and representation.

www.manaraa.com

130

Search: This is the most basic tool used in all Al systems.

Solutions to the types, of problems for which Al is used are

nondeterministic (for a deterministic problem an explicit

solution could be developed). Search provides a systematic

method of exploring (searching) a variety of alternatives in a

solution space.

Control: An Al system often consists of a number of individual

processes, each with a limited behavior. Control determines

how the various procedures are selected, and how they interact

with the information in the problem space. Control and search

are interrelated. Control selects the problem solving

mechanism; search orders the evaluation and invocation of the

control processes while traversing the solution space.

Representation: Knowledge and data must be translated into some

internal representation to be used in processing and problem

solving. Additionally, all of the concepts and processes used

to solve the problem must be converted into some symbolic form

which can be processed by the machine.

A variety of control, search, and representation techniques exist. Artificial

intelligence research involves finding the appropriate combinations of these

basic concepts which yield effective problem solvers for particular problem

solving domains.

CI.2 Problem Solving Domains

No complete solutions to any of the various problem solving domains

exists. However, considerable progress has been made, and in a variety of

areas the computer shows respectable behavior [WinsP77].

Chess: Due to the complexity of the problem, chess is the subject

of much work. Solutions typically involve search with

heuristics to reduce the search space. Recent systems rely on

special computer hardware to improve performance [LevyD80].

Game playing quality improves with the depth of the search, but

the problem solving time required grows exponentially with

search depth. It does not appear that computers and humans

play chesr. in the same manner. Humans appear to use abstract

pattern recognition, viewing the board as a whole, while the

machine treats each piece individually. The best machines can

www.manaraa.com

now approach the level of play of masters. They have defeated

masters in individual games, but never in a complete

tournament.

Natural Language Processing; The best example of natural language

understanding and discourse is the work of Winograd [WinoT71].

He presents a detailed example of discourse with his robot

(called SHRDLU) conversing about a specific domain — the

blocks world. The system shows the complexity of dealing with

such ill-defined problems as language. Additionally, it

introduces a number of concepts (such as the procedural

representation of knowledge), and provides the basis for later

work in many areas.

Symbolic Manipulation: Part of Project MAC was the development of

the MATHLIB system. Part of MATHLIB is MACSYMA (MAC Symbolic

Manipulation System) [BogeR75]. One of the most interesting

components of MACSYMA is its symbolic integration capability,

which is regarded as superior to all human problems solvers for

this task.

Medical Diagnoses: MYCIN is an "expert system" used to help

physicians diagnose and treat bacterial infections [ShorE76] .

It is based on rules provided by experts, and has a special

subsystem which allows modifications of the expert knowledge.

MYCIN operates in the domain of uncertainty. All the data

presented to the program may have a margin of error, and all of

the knowledge rules are based on operations on uncertain data.

The system shows good performance, approaching the level of a

human specialist.

Mass Spectrogram Analysis: DENDRAL is one of the first true expert

systems [BuchB69]. It is used to analyze organic chemistry

mass spectrograms. Given the spectrogram and the chemical

formula, the system will deduce the structural arrangement.

DENDRAL is capable of operating at the level of an expert

graduate student.

Speech Understanding: The most successful system to date has been

HARPY [ErmaL80]. In a specific task domain, it can understand

a vocabulary of 1000 words, with an error rate of 5%, in real­

time. HARPY provided the basis for Hearsay-II, an advanced

www.manaraa.com

132

knowledge based system for speech understanding. The problem

solving model used in Hearsay-II is applicable to other problem

domains.

C.2 Production Systems

The production system [NeweA72] represents one of the techniques used in

Al problem solving, and is the basis for the types of expert syst'jES discussed

in the text. Production systems are deductive problem solvers. Such a system

consists of four basic items: (1) the description of an initial problem state

which contains a number of entities and facts about the problem, (2) a goal

state, (3) a set of productions, and (4) a controller. Each production is a

rule, consisting of a predicate and an Action. The predicate states: if some

condition about an entity is known to be a fact, then the corresponding action

is to be performed which will modify the problem state. The controller is

responsible for determining which productions are to be applied, and the order

of application of the productions.

One possible operational procedure is as follows. The controller loops,

selecting and applying productions until no productions are applicable, or

until the goal state has been reached. Production selection strategies

include: (1) apply the first production applicable, (2) find all productions

applicable, and select one based on a predefined priority, or (3) find all

applicable productions, and apply the most recently used. If the goal state

is reached, the system has deduced the goal by transforming the knowledge, and

adding new knowledge from the operation of the productions. If the system

runs out of productions, it has deduced all possible knowledge, and the goal

is unreachable. Either the goal is incompatible with the knowledge, or

insufficient productions exist. The process of working from known-to-new

facts is called forward chaining.

The alternative of backward chaining is sometimes more appropriate. In

such a system, the goal is hypothesized to be true. Productions which produce

the goal are found, and the new goal becomes all of the knowledge needed to

make the predicates of these productions true. The process is applied

recursively until no other productions are found. If the unresolved goals are

consistent with the knowledge in current problem state, the hypothesis is

true. Otherwise the hypothesis fails; either it is incorrect, or

insufficient productions exist.

www.manaraa.com

133

In the recursive process, a number of search strategies are possible.

The two simplest are: (1) depth first — select one alternative production,

generate one new goal, and move forward. When blocked, move back and try

another goal at the last decision point. (2) breadth first — generate the

goals for all productions at each level and move forward in parallel, one

level at a time. Again, when blocked, backtrack. Both procedures have

advantages and drawbacks, based on the nature of the search space. Other

procedures, such as best first, hill climbing, or branch and bound, all

attempt to minimize the total work done in searching, but no procedure is

optimal in all cases. The concept of backup is one of the the most important

components of controlling any search. Backup permits the system to recover

from a failure state, and to examine other alternatives.

Production systems may operate as control systems. They can continually

monitor the problem state and perform actions based on state changes, to

control some object. Execution continues until a production explicitly

terminates the system. Similarly, systems may be connected to an external

information source from which they may request information when knowledge is

lacking or can not be derived.

The following is an example of a simple production system for a

thermostat [NeweA72]. Control starts with the first line of the list of

productions and continues until a "true" predicate is found. Then the

corresponding action is performed and execution resumes with the first

production.

THERMOSTAT

TEMPERATURE > 70° AND TEMPERATURE < 72° —J»

STOP.

TEMPERATURE < 32° — •

CALL-REPAIR-MAN; TURN-ON [ELECTRIC-HEATER].

TEMPERATURE < 70° AND FURNANCE-STATE - OFF — >

TURN-ON [FURNANCE].

TEMPERATURE > 72° AND FURNANCE-STATu - ON — *

TURN-OFF [FURNANCE].

Production systems a..e valuable because tbe problem solving knowledge is

modular. It is possible to change or augment the knowledge in the

www.manaraa.com

134

productions, and thereby change the behavior of the problem solver, since the

knowledge is simply data to the controller. Since the controller is knowledge

independent, the interactions of the various productions need not be

specified. This eliminates the combinatorial increase in the number of

interaction of items, and it also allows the controller to generate all

possible interactions, some of which may have been overlooked if they were

explicitly programmed.

All of this flexibility does lead to a major drawback. Such systems are

known as "weak" problem solvers. They operate in a blind fashion. They may

overlook obvious solution paths and produce circuitous ones, or they may

require much knowledge and do much problem solving which is not pertinent to

obtaining the goal. As the number of productions increases, the resulting

interactions may not be readily predicted, and control is effectively lost.

C.3 Knowledge Based Systems

Search is the basis of many of the problem solving methods; formulate a

set of alternative solutions and search that solution space. Increasing

problem complexity leads to larger search spaces. An effective problem solver

must search efficiently. To do so, it mur>t determine the solution by

examining as small a portion of the solution space as feasible. A weak solver

has no guidelines to assist in searching. Knowledge helps: knowledge about

the problem domain, or knowledge about effective problem solving strategies in

the problem domain. This knowledge is the expertise of problem solving.

Expert or knowledge based systems have been developed to use such information

in providing effective problem solvers. Such systems are known as "strong"

solvers. MYCIN, DENDRAL, and Hearsay-II are all examples of knowledge based

systems.

Knowledge may be used in a number of ways. One method is to use "meta

rules" [DaviR'/7]. Meta rules are used to describe which rules are appropriate

in a given situation. Thua, the search becomes a two level process. At the

lowest level a solution is found. At the higher level a similar problem

solving strategy is used to determine the process for the selection of the

actual rules used to solve the real problem. Of course, such a system may be

extended to many levels; meta meta rules describe which meta rules are

applicable and determine how to select the meta rules used to select the

problem solving strategy, etc. The ability of the system to diiect the

problem solving strategy is one difference between the weak, general solvers

www.manaraa.com

135

and the knowledge based systems. Thus, knowledge serves a key role in

selecting the knowledge sourcea (rules).

Another use of knowledge is in the description of the problem domain and

the problems solving rules. Knowledge based systems are types of production

systems. Weak production systems are based on simple axiomatic rules. They

consist of a large number of simple rules, and problem solving involves

deduction through simple transformations. The largs number of rules and lack

of direction contribute to ineffective solvers. In the knowledge based

systems, the rules are more complex. In MYCIN, for example, rule's consist of

large predicates each with several premises each involving a number of

parameters. Actions may affect multiple parameters, and a parameter

description may require several lines of definition. In H^prsay-II, rules are

denoted knowledge soarr.es, and these knowledge sources are encoded as

procedures. Such knowledge ranges from a hundred to several thousand lines of

algorithmic language code. Encoding problem domain knowledge in higher level

units provides more efficient solvers, since the number of rules and the

number of interactions are reduced. This reduces the search space.

Knowledge also helps to control uncertainty. Complex problems often do

not have an exact solution, or the data present is incomplete or uncertain.

Knowledge of the problem domain, combined with compLex rules based on

knowledge uncertainty allows the knowledge based systems to operate in the

domain of inexact, problem solving.

The following is an example of an expert rule taken from MYCIN [ShorE76]„

RULE200

IF: 1) THE SITE OF THE CULTURE IS BLOOD, AND

IF: 2) THE STRAIN OF THE ORGANISM IS GRAMNEG, AND

IF: 3) THE MORPHOLOGY OF THE ORGANISM IS ROD, AND

IF: 4) THE AEROBICITY OF THE ORGANISM IS ANAEROBIC, AND

IF: 5) THE PORTAL OF ENTRY OF THE ORGANISM IS GI

THEN: THERE IS STRONGLY SUGGESTIVE EVIDENCE (.9) THAT THE

IDENTITY OF THE ORGANISM IS BACTEROIDES

The rule shown above deals with a number of parameters such as SITE, STRAIN,

AEROBICITY, etc. The description of a simple MYCIN parameter is given below

[ShorE76].

http://soarr.es

www.manaraa.com

136

YES-NO PARAMETER

FEBRILE: <FEBRILE is an attribute of a patient and

therefore a member of the list PR0P-PT>

EXPECT: (YN)

LOOKAHKAD: (RULE149 RULE109 RULE045)

PROMPT: (Is * febrile?)

TRANS: (* IS FEBRILE)

Expert systems use knowledge to assist in problem solving. Rather than

attempting to be general systems capable of solving any type of problem, they

use the same basic Al concepts to attack specific problems which require

knowledge to represent complex problem solving strategies. The systems do

retain the advantage of the original production systems by maintaining

knowledge independently of the problem solver. The knowledge baBed systems

present a problem solving paradigm which may be applied to other problem

domains by changing the knowledge sources.

Problems still exist. Complex knowledge sources perform complex tasks

with limited interaction with the rest of the system, due to the reduced

number of components which can interact. The result is a limit to the

interaction of the knowledge, and a resulting limit on system performance,

since potentially useful interactions do not occur. Also, as the amount of

knowledge increases, the problem of determining the appropriate knowledge

becomes more important and more costly. Once acceptable processes exist,

algorithmic encoding can improve efficiency and effectiveness. Despite their

drawbacks, knowledge based systems appear to be the best technique currently

available for performing complex ill-structured problem solving tasks.

www.manaraa.com

137

GLOSSARY

There are a veiiety of terms and phrases used throughout the text with

which the reader may not be familiar, The following contains a short

definition of these terms. For the readers convenience, the terms are grouped

by subject.

1. General

The following are general computer science terms which are used

throughout the text.

Applications: Computer software which is applied to, or used for,

some particular task.

Artificial Intelligence: A discipline of computer science dealing

with the development of computer based systems for intelligent

problem solving behavior (see appendix C).

Back-End Database Management Machine: A dedicated computer

performing all database management functions. A back-end

database machine is logically located between the main

processor (which requests all database processing) and the

secondary storage system.

Configuring: The process of selecting the components, and the

arrangement of these components into a system.

Data Abstraction: The process of defining new data types (abstract

types) based on a set of existing data types.

Database: A logical collection of data maintained in a single

organizational unit on some secondary storage devices (see

appendix B).

Database Administrator: The individual who is responsible for

supervising a database management system.

Database Manager: A database management system. The run-time data

handling component of a database management system (see

appendix B).

Database Management: The process of managing data through the use

of a database and database management system (see appendix ft).

www.manaraa.com

Database Management System: The set of computer software used to

control and support a database (see appendix B).

Data Model: The type of basic logical organizational structure of

items in a database.

Data Types: The generic data quantities which have a particular

representation and behavior (e.g., REAL and DOUBLE PRECISION in

FORTRAN are both floating point types).

Expert Systems: A type of artificial intelligence system which

uses expert knowledge to control and direct problem solving in

a knowledge baaed system (see appendix C.3).

Hierarchical Model: A data model used in database management

systems which is based on a hierarchical data organization (see

appendix B.l).

Information Flow: The process through which data and information

moves between the various individuals and processes that

create, use, and manipulate the information.

Kernel: The basic core of software and operational capabilities in

a system.

Knowledge Based System: Any type of artificial intelligence system

which uses domain specific knowledge to control and direct

problem solving behavior (see appendix C.3).

Knowledge Source: A single logical unit of expert knowledge used

in a knowledge based system (see appendix C.3).

Language Extensibility: Computer language facilities which allow

the language definition to be extended (see section 4 below).

Network Model:, A data model used in database management ayBterns

which is based on a network data organization.

Operators: The basic primitive functions and operations

implemented directly by the hardware of a computer system

(i.e., add, multiply, load, store, read, write, etc.).

Natural Language: The normal (unrestricted) form of spoken and

written language.

Packages: A complete set of computer code and associated data

structures (organized into a single logical unit) design to

perform some particular function.

Production: A premise-action rule of a production system (see

appendix C.2).

www.manaraa.com

Production System: A type of artificial intelligence system based

on representing problem solving behavior in the form of

productions (see appendix C.2).

Problem Oriented Language: POL. An artificial computer language

subset of natural language (with restricted syntax and

vocabulary) used for some particular problem area.

Relational Model: A data model used in database management systems

which is based on a relation form of data organization (see

appendix B.l and B.3).

Schema: The definition of the logical structure and content of a

database (see appendix C.2).

Software Engineering: The process of "engineering" a piece of

software. A discipline of computer science dealing with the

application of engineering principles to the development of

software.

Software Tools: General purpose utility programs UBed to assist in

developing software. Utility components of a complete system.

Strong Solver: Any type of artificial intelligence system which

uses domain specific knowledge in problem solving (see

appendix C.2).

Token Scanner: A program which converts (parses) a stream of input

characters into a set of basic symbols (i.e., numbers, names,

punc tua tion, e tc.).

Tuning: The process of adjusting software to improve its

performance.

Virtual Back-End Database Machine: A virtual computer

implementation of a back-end database machine.

View: The description of the organization of a subset of the data

in a database.

Virtual Machine: The implementation of a complete computer

execution environment in software. The software which

implements the functions of a real piece of hardware.

Weak Solver: Any type of artificial intelligence system which

operates without the use of domain specific knowledge to assist

in problem solving (see appendix C.3).

Writable Control Store: Memory which can be loaded under program

control, and which contains the microcode definitions of

operators which can be executed by the processor.

www.manaraa.com

2. Computer Aided Design Applications

The following are all types of applications of computers to engineering

and design. Computer aided design applications are discussed in section 1.2.

Computer Aided Design (CAD): The acronym CAD usually denotes this

application area. A definition of CAD is: the use of

computers anywhere in the design process. As such, any of the

following applications fall within the scope of CAD. ,

Computer Aided Drafting: This application is sometimes denoted

CAD. It is the application of computer graphics to the

production of drawings through assisting draftsmen.

Computer Aided Manufacturing (CAM): Computer aided manufacturing

is the combination of gacmetrie modeling and numerical control.

It permits a description of an object to be created within the

computer and automatically converted into manufacturing

instructions.

Computer Graphics (CG): Computer graphics usually refers to the

software tools and techniques for graphics, ard to the

development of innovative graphics applications. Any software

which uses the computer to produce graphical output applied to

engineering or design falls within this application area.

Design Automation (DA): Design automation is used to denote the

application of design and analysis software to the layout,

routing, and mask artwork of printed circuit boards and

integrated circuits.

Geometric Modeling: The geometric modeling application deals with

the development of mathematical models for the geometry of

physical objects. It usually consists of procedures to create,

manipulate, perform processing on (such as volume

computations), and display the descriptions of objects

[BaerA79, RequA80].

Numerical Control (NC): Numerical control is the application of

computers to provide control mechanisms for automated milling

machines. NC is one of the oldest CAD application areas. The

major application program is APT [RossD59. RossD78], APT

provides a mechanism to convert user commands describing the

part to be machined into the control tapes used to operate1 a NC

milling machine.

www.manaraa.com

3. Programming Languages

The following are some of the major computer languages which might be

used to support engineering applications, or which have unique features which

may be of value in the computerization of engineering problems. Programming

languages are discussed in section 3.5.2 and 4.5.

Ada: The Department of Defense [DoD] has found that defense

contractors use a variety of languages to implement software.

To attempt to regain control and provide some standardization,

Ada [D0D8O] has been designed. Ada is based on Pasca] (see

below) with many of Pascal's problems removed. It has a number

of additional features for use in real-time and multi-tasking

problems. Ada is a DoD standard, is being considered as a

national standard, and its future is uncertain.

Algol: Algol 60 [NaurP60, PerlA78] is the parent to the Algol

family of languages. Although not widely used, its block

structuring and control structure concepts are now features of

the majority of new algorithmic languages.

Algol 68: Algol 68 is a revision of Algol, and it was designed to

overcome a number of difficulties in iLs predecessor. It

introduced a number of concepts, including preludes and

operator overloading [TaneA76].

APL: APL [FalkA73, FalkA78] was introduced as a theoretical

language [IverK62], and implementations which are different

from the original language design have been introduced. APL

operates at a higher level than common procedural languages,

has a number of unique operators, and has a distinct style.

The data components are scalars, vectors, and matrices of

arbitrary dimensions. All operators a,re equally applicable to

all data items (A + B can represent the addition of scalars,

vectors, or matrices). A complex procedure in a conventional

programming language can often be coded in a simple APL

statement. However, the lack of common control structures,

such as loops, results in programs which solve problems in a

manner quite different from traditional languages.

LISP: LISP [McCaJ62, McCaJ78] and it« variants are the de facto

standard for artificial intelligence programs. The language

treats all programs and data items equally, as elements of

www.manaraa.com

linked lists. This linked list form is the basic data item

supported by LISP. LISP is an extremely expressive language.
i

Programs which write and execute other programs by producing

the linked list representation of the program may easily be

developed. However, LISP is usually an interpreted language,

and it is very costly in terms of machine resource utilization.

Pascal: Pascal [JensK76] was designed as a student teaching

language, and is a successor to Algol. Because of the rational

basis for the language design, it has become quite popular for

many general applications. It is block structured and contains

all of the basic control and data structuring facilities. Due

to its original teaching nature, it contains a number of

serious deficiencies (particularly in I/O and compilation

facilities) which do not make it acceptable for large-scale

engineering applications. «*•

PL/I: PL/I [RadiG78] was introduced by IBM as a general purpose

replacement for both FORTRAN and COBOL, and to provide a system

implementation language. It is block structured and has an

extensive set of features and data structuring facilities.
>

4. Programming Language Features

The following are various features of programming languages. Language

features &re discussed in section 4.5.

Control Structures: Control structures provide the mechanisms to

control the execution flow of a program. The various looping,

selection, and iteration constructs simplify the details of

programming. Resulting programs look cleaner and resemble the

desired processes rather than obscuring the process amid the

language statements required to produce the needed flow

control.

Data Structures: Data structures permit individual data items,

which are logically related, to be grouped into single

organizational and processing units developed to meet the

representational needs of a program. The data structures can

then be dealt with as an aggregate, through formal programming

language mechanisms, rather than through ad hoc constructs.

www.manaraa.com

Data Flow Architecture: Data flow architecture is a new approach

to both hardware and programming languages. The classical

programming languages are control structure driven. The user

explicitly states the control paths used to transform the data

(Do X to datum Y to produce datum Z). In data flow, the

program consists of descriptions of operators and data items,

without explicit flow statements. Associated with the data

items are the operators which transform the data. The programs

are data driven. Whenever the input data for an operator is

present (1) the operator is invoked, (2) the data is

transformed by the operator, and (3) the process continues

(When datum Y becomes present, perform X, yielding datum Z).

Such program forms simplify program development. Programs

transform data; programming a statement of the transformation

which can take place at any step is simpler that explicitly

coding all che actions which need be performed and the

interrelations and sequencing of control of these actions.

Environments: Language environments are sets of tools, oriented

towards a particular language, and used to assist in developing

programs in that language [FairR80]. The development of

complex systems requires more than a computer and a compiler.

Language environments are design to help in such cases. They

provide the tools to help maintain, edit, and debug the

applications, as well as the ability to integrate applications

and support packages. Since these tools are oriented towards a

single particular language, they are more beneficial than

generic tools because the tools have a built-in knowledge of

the problem domain in which they operate.

Extensibility: Language extensibility is the capability of a

language to support the definition of extensions to the

language without modifying the language compiler. Many

languages have a fixed set of features (data types, control

statements, data structures, etc.). Extensible languages have

a number of particular features which allow the details of the

language to be extended, to permit the language to be tuned to

an application, and to provide a more abstract set of features.

Operator overloading (see below) is an example of language

extensibility.

www.manaraa.com

144

Operator Overloading: Operator overloading iB the ability to

define or redefine how an operator is applied. In languages

such as Algol 68 and Ada, facilities exist to define how the

various operators act, based on the type of operand. For

examples, the "*" is defined to perform multiplication on

INTEGER, REAL, COMPLEX, and DOUBLE PRECISION types in FORTRAN.

Newer languages allow procedures to be written determining how

such an operator will perform for any type of operand. Thus,

"*" could be extended to vectors or matrices. The compiler can

determine the appropriate operator action (i.e., if A * B is

scalar or vector addition based on A and B), and can even

handle the necessary coercion (converting data types such as

integer to real) to provide the correct data items. The

ability to "overload" the operators permits the data structures

to be changed, the definitions of the operators updated, and

the program recompiled without dealing with the actual code

which uses the operators and which is used to perform the

computations.

5. Computer Operating Systems

The following are various type of computer operating systems and system

configurations in use today. Computer systems are discussed in section 3.5.3.

Batch: Batch is the classical type of system where all processing

is done utilizing bulk input and output systems with no

interaction with the user from the time the job is submitted

until it is completed.

Distributed: Distributed systems consist of multiple linked

machines (usually at different sites). Data is available for

sharing among the components of the system, and the actual

processing of tasks is also shared (distributed) across the

entire system (sometimes automatically).

Networks: Networks are created through the linking of multiple

systems to permit the sharing of system resources, and to

permit the transfer of data and programs between the machines

at the various nodes of the network. In a network, only the

data is, shared. The processing of tasks is explicitly assigned

to a particular machine.

www.manaraa.com

Satellite: Satellite systems are types of distributed systems.

They consist of a large general purpose computer at a central

site and one or more subordinate satellite processors with

lesser capabilities. Data and processing is shared between the

central system and the individual satellites. A typical use is

to provide a satellite processor to drive a graphics display

subsystem, off-loading the graphics tasks which require a

dedicated system to obtain acceptable response time.

Tine-Sharing: Time-sharing is the classical interactive system

where each user accesses the computing resource through a

terminal, and each user appears to be using a dedicated system.

All processing is done immediately after the user makes a

request, and all input and output is directed to the user's

terminal.

Transaction Processing: Transaction processing is the use of on­

line terminals for simple data entry and inquiry. This is

typical of the activities done in banking and airline

reservation systems. A simple request (transaction) or piece

of data is entered and completely processed by the transaction

processing application as a single unit.

www.manaraa.com

146

VITA

Daniel Robert Rehak is a native of Leechburs, Pennsylvania. He was born

on May 11, 1951 in Wilkensburg, Pennsylvania. In 1969 he graduated from

Leechburg Union High School, Leechburg, Pennsylvania, and Lenape Area

Vocational Technical School, Ford City, Pennsylvania. Attending Carnegie-

Mellon University, in Pittsburgh, Pennsylvania, he received a Bachelor of

Science Degree in Civil Engineering in May 1973. He served as an

undergraduate research assistant, and was awarded fourth place in the Lincoln

Arc Welding Foundation Student Design Competition in 1972.

Mr. Rehak began his graduate studies at Carnegie-Mellon University, and

received a Master of Science Degree in Civil Engineering in November 1975. He

served as a research assistant in the Department of Civil Engineering

participating in a project to develop a pilot version of a national

engineering software center.

From September 1974 to May 1975, Mr. Rehak attended George Waahington

< University, Washington, D.C. He served as a research assistant in the JIAFS

program at NASA Langley Research Center, Hampton, Virginia.

Since 1975, Mr. Rehak has been a graduate student at the University of

Illinois, where he has been a research assistant in the Department of Civil

Engineering. During this time he also has held minor appointments with the

U.S. Army Corps of Engineers, Construction Engineering Research Laboratory

(CERL), Champaign, Illinois, and the Coordinated Science Laboratory of the

University of Illinois. His research has been in the fields of computer

applications to engineering problems, development of engineering computer

systems, computer graphics, and finite element systems. From 1976 through

1978 he held a University of Illinois Fellowship.

Mr. Rehak has coauthored several technical reports and papers on the

subjects of the research conducted at Carnegie-Mellon University and the

University of Illinois. He has been employed as a private consultant for the

development and utilization of engineering software. He is a member of Phi

Kappa Phi and Sigma Xi honorary fraternities, and is a member of the

Association for Computing Machinery.

